ESTATÍSTICA APLICADA ÀS CIÊNCIAS AMBIENTAIS

Prof. Anderson Rodrigo da Silva

<< Exercícios II >>

#1 - Metais pesados (Quinn & Keough, p.173)

Medley & Clements (1998) estudaram o efeito de metais pesados, especialmente zinco, sobre a riqueza e diversidade de algas diatomáceas em rios do Colorado (EUA). 34 estações de coleta foram divididas de acordo com a concentração de metais pesados, em: Background (20 g /L), 8 estações, Low (21–50 g /L), 8 estações, Medium (51–200 g /L), 9 estações, High (200 g /L), 9 estações. A seguinte hipótese foi levantada: não há diferença entre os 4 grupos de níveis de zinco em relação a diversidade média de espécies. Verifique-a.

E-4~	Nível de Zn				
Estação	B	L	M	H	
1	2.27	1.4	1.62	1.25	
2	1.7	2.18	2.19	1.15	
3	2.05	1.83	2.1	0.63	
4	1.98	1.88	2.06	1.04	
5	2.2	2.1	2.02	1.9	
6	1.53	2.38	1.94	1.88	
7	0.76	2.83	1.75	0.85	
8	1.89	1.66	0.8	1.43	
9			0.98	1.37	
Média	1.80	2.03	1.72	1.28	

#2 – Fotoperíodo

Dados de crescimento de plântulas foram coletados em quatro níveis de fotoperíodo, cada um repetido 6 vezes. Verifique se há diferenças estatísticas entre eles.

	$Muito\ curto$	Curto	Longo	Muito longo
	2	3	3	4
	3	4	5	6
	1	2	1	2
	1	1	2	2
	2	2	2	2
	1	1	2	3
Média	1.67	2.17	2.50	3.17

#3 – Ouriços do mar (Quinn & Keough, p.209)

Andrew & Underwood (1993) estudaram o percentual de cobertura de algas de acordo com densidades de ouriços do mar (0, 33, 66 e 100% natural). Os dados foram amostrados em 4 quadrantes de igual tamanho em cada densidade. Faça a ANOVA e avalie a hipótese de que a densidade de ouriços afeta a cobertura por algas.

Densidade	Recife	Cobertura
0	1	34.2
0	2	62
0	3	2.2
0	4	58.4
33	1	2.6
33	2	0
33	3	37.6
33	4	35.8
66	1	28.4
66	2	36.8
66	3	1
66	4	20
100	1	1.6
100	2	0
100	3	1
100	4	2.6

#4 – Mangaba

Importe para o R os dados 'mangaba.csv' (link), provenientes de um experimento para avaliação do efeito da temperatura e do tempo de armazenamento de frutos de três variedades de mangaba sobre variáveis físico-químicas do fruto (SS: teor de sólidos solúveis, VITAC: concentração de vitamina C).

- a) Faça análise gráfica da interação.
- b) Faça a ANOVA e tome conclusões sobre o resultado dos testes F.
- Se necessário, faça análise da interação aplicando testes de médias.