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random term in the model to estimate the vari-
ance associated with each term in the model sep-
arately from the other components of variation
(Section 9.1.6). The costs (C) must also be deter-
mined, preferably from our pilot study where
costs can be estimated empirically. The cost for
each quadrat is simply the time and/or money
required to place the quadrat and estimate the
percentage cover of algae, say five minutes. The
cost for each patch would be the time taken to
move all the gear to each patch (20 minutes) and
the time taken to move between quadrats in each
patch (three minutes) but NOT the time taken to
process a quadrat.

A number of textbooks (Snedecor & Cochran
1989, Sokal & Rohlf 1995, Underwood 1997)
provide equations for relating costs and variances
to determine the optimum number of replicates
at each level of sampling (and see Andrew &
Mapstone 1987). In a two factor design, the
optimum number of replicates (e.g. quadrats) in
each level of B (e.g. each patch) is:
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where C is the cost for the appropriate level and s?
is the estimate of the variance, i.e. the mean
square. Note that if the costs of recording a single
quadrat are the same as the costs of setting up a
new patch, then the sample size is just based on
the ratio of the two variance components. Based
on the variances and the costs listed above, the
optimal number of quadrats per patch is 0.88, i.e.
one (Box 9.3).

The number of patches (q) for each density
treatment can be determined in two ways based
on either the desired variance of the mean for
each site (s,? or the fixed total cost of sampling a
site (C,):
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In the first case, we fix the desired level of preci-
sion for the mean of each site (s, and, using our
values for n and the estimated variance compo-
nents for quadrats and patches, solve for q. In the
second case, we fix the total available cost for

sampling each density and, again using our values
for n and the estimated variance components for
quadrats and patches, solve for q. In practice,
having a fixed total cost, in time or money, is likely
so the latter approach might be used more often.
If we set the total cost for setting up each density
treatment as four hours (240 minutes), then the
number of patches would be 8.6, i.e. nine (Box 9.3).
So based on these estimates, the most efficient
design would be one quadrat per patch and nine
quadrats per treatment. Note that these costs are
guesses on our part so we are not suggesting that
there was anything wrong with the design used by
Andrew & Underwood (1993).

Keough & Mapstone (1995) made a number of
sensible recommendations for deriving and
using these values for sample size at each level of
subsampling. First, the calculated sample sizes
depend on the quality of the pilot data, particu-
larly the variance estimates, and how well the var-
iances in the subsequent main study will match
those from the pilot study. It is important, there-
fore, that the pilot study is done in similar loca-
tions and at a similar time (e.g. season) to the
main study. It is also important to check that
these variance estimates still hold once the main
research has started and adjust the sample sizes
if necessary. It is much easier to reduce sample
size during an ongoing research program than to
increase them, so the initial sample sizes should
be generous. Second, the sample size values will
usually not be integers so they should be rounded
up to the nearest integer. Finally, the calculations
may recommend sample sizes of less than one,
because the variance at that level is so small or
the costs so cheap. However, some level of replica-
tion is necessary for sensible inference and,
remembering that pilot studies may underesti-
mate the true variance, we recommend that more
than one replicate at any level should always be
used.

9.2 | Factorial designs

An alternative multifactor linear model is used
when our design incorporates two or more factors
that are crossed with each other. The term crossed
indicates that all combinations of the factors are
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Table 9.7 ‘ Illustration of marginal and cell means for a two factor factorial ANOVA design. Data from Quinn
(1988) where factor A is limpet density, factor B is season and the response variable is number of egg masses per
limpet in three replicate enclosures per cell

B, B, Bj Marginal means A
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Marginal means B M My 4 Grand mean
Factor B (Bj) B, B,
Season Spring Summer Factor A marginal means
Factor A (A) Density
A, 8 v, =2417 y,=1833 Vo, = 2125
A, I5 Vo, =277y, =1.178 Vi, = 1677
A, 30 vy = 1565  y,, =081 y_,=1.188
A, 45 vy = 1200 y, =0593 y_,= 0896
Factor B marginal means Vo1 = 1.840 Yoy = [.104 y=1472
A, A, Factorial designs are most often used for
) () manipulative experiments. For example, Poulson
A\ ﬂ\ & Platt (1996) examined the effects of light micro-
environment (three levels: beneath canopy, single
(/E:) 5’[22 ) (Z) (,3:) 5’/22 ) (IZ) tre_efall gap, multiple treefall gap) and seedling
height class (three levels: 1-2 m small, 2-4 m
medium, 4-8 m large) on the difference in growth
between sugar maple and beech saplings (the
() ) response variable was the difference in growth of
Vi) Yy paired seedlings of each species). There were five
Yaa1) Ya replicate seedling pairs for each of the nine micro-
Y1) Yiiy = Vi

JF- 0B WA Part of data set for two factor crossed ANOVA,
with p levels of factor A (i=1 to p), q levels of factor B (j= I
to q), where the levels of B are the same and crossed with
each level of A, and n replicate observations within each
combination (cell) of Aand B (k=1 to n).

included in the design and that every level (group)
of each factor occurs in combination with every
level of the other factors. Such designs are also
termed factorial. This pattern is in contrast to
nested designs, where the levels of the nested
factor are different within each level of the main
factor. We will first consider factorial (crossed)
designs with two factors, where every level of one
factor occurs at every level of the other factor and
both factors are of equal importance - see Figure
9.2 and Table 9.7.

environment-height combinations. Another
example comes from Maret & Collins (1996), who
set up an experiment to test the effects of inverte-
brate food level and the presence or absence of
tadpoles on variation in size among larval sala-
manders. There were two factors: two levels of
ration of invertebrate prey (low and high amounts
of brine shrimp per day) and two levels of tadpole
supplementation (with and without). There were
originally eight replicate aquaria in each of the
four cells, although some aquaria were omitted
from analysis because one or more salamander
larvae died. The response variable was mean
snout-vent length of salamanders in each aquar-
ium.

In these two examples, both factors in the
design are fixed, i.e. all possible levels of interest
for the two factors have been used in the study
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and our inference is restricted to these levels.
These are analyzed with fixed effects linear
models, also termed Model 1 analyses of variance.

Factorial designs can include random factors
that are often randomly chosen spatial or tempo-
ral units. Designs that include only random
factors are analyzed with random effects models,
termed Model 2 analyses of variance, although
these are unusual in biology. One example is from
Kause et al. (1999), who examined phenotypic plas-
ticity in the foraging behavior of sawfly larvae
with an experiment that used six species of saw-
flies and 20 individual mountain birch trees that
represented a range of leaf qualities for the herbiv-
orous sawfly larvae. There were between four and
six larvae per tree and species combination and
the response variable was an aspect of foraging
behavior (e.g. number of meals, relative consump-
tion rate etc.). Both sawfly species and individual
tree were random factors as they were a sample
from all possible herbivorous sawflies and all pos-
sible trees.

Designs with a combination of fixed and
random factors are analyzed with mixed linear
models, also termed Model 3 analyses of variance.
Including a random factor in a multifactor design
is important in biology, because it allows us to
generalize the effects of a fixed factor to the pop-
ulation of spatial or temporal units (Beck 1997).
For example, Brunet (1996) tested the effects of
position on an inflorescence and randomly
chosen plants on fruit and seed production of a
perennial herb. This was a two factor design with
flower position as the fixed factor and individual
plant as the random factor. A second example
comes from Twombly (1996), who randomly
assigned copepod nauplii from 15 sibships to one
of four food treatments (high constant food and
high switched to low at three different naupliar
stages); there were four replicate dishes (each con-
taining two nauplii) per factor combination and
the response variable was age at metamorphosis.
Food treatment was a fixed factor and sibship was
a random factor.

Factorial designs can include three or more
factors (Section 9.2.12), although we will illustrate
the principles based on two factor designs.
Factorial designs allow us to measure two differ-
ent sorts of factor effects.

1. The main effect of each factor is the effect
of each factor independent of (pooling over) the
other factors.

2. The interaction between factors is a
measure of how the effects of one factor depend
on the level of one or more additional factors.
The absence of an interaction means that the
combined effect of two or more factors is pre-
dictable by just adding their individual effects
together. The presence of an interaction indi-
cates a synergistic or antagonistic effect of the
two factors.

We can only measure interaction effects in fac-
torial (crossed) designs. In nested designs where
factor B is nested within factor A, different levels of
B are used in each level of A so any interaction
between A and B cannot be assessed. When all pos-
sible combinations of the two (or more) factors are
used in factorial designs they are called complete
factorials. Sometimes this is logistically impossible
because the experiment would be too big and/or
costly, soa subset of factor combinationsis used and
the design is termed a fractional factorial. Such
designs are more difficult to analyze because not all
interactions can be measured - see Section 9.2.12.

Fecundity of limpets: effects of season and
adult density

Our first worked example of a factorial ANOVA
design and analysis is from Quinn (1988). He
examined the effects of season (two levels,
winter/spring and summer/autumn) and adult
density (four levels, 8, 15, 30 and 45 animals per
225 cm?) on the production of egg masses by rocky
intertidal pulmonate limpets (Siphonaria diemenen-
sis). Limpets (approx. 10 mm shell length) were
enclosed in 225 cm? stainless steel mesh enclo-
sures attached to the rocky platform. There were
eight treatment combinations (four densities at
each of two seasons) and three replicate enclo-
sures per treatment combination. Note that all
four densities were used in both seasons, hence a
factorial or crossed design. One of the important
questions being asked with this experiment was
whether the effect of density on number of egg
masses per limpet depended on season. Quinn
(1988) predicted that the density effect would be
greater in summer/autumn, when algal food was
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scarce, than in winter/spring, when algal food was
more abundant.

Quinn (1988) described another experiment
looking at the same species of limpet lower on the
shore. Here the limpets were bigger (15-20 mm
shell length) and there was much less seasonal
variation in the availability of algal food, algal
cover being high all year round. The same two
factors were used for this experiment but only
three densities were included: 6, 12 and 24

limpets per 225 cm?. So there were six treatment
combinations (three densities at each of two
seasons) and three replicate enclosures per treat-
ment combination. The analyses of both experi-
ments are in Box 9.4.

Oysters, limpets and mangrove forests

Our second example is from Minchinton & Ross
(1999), who examined the distribution of oysters,
and their suitability as habitat for limpets in a

Box 9.4 | Worked example of two factor fixed effects
ANOVA

Quinn (1988) examined the effects of season (winter/spring and summer/autumn)
and adult density (8, I5,30 and 45 animals per 225 cm? enclosure) on the produc-
tion of egg masses by intertidal pulmonate limpets (Siphonaria diemenensis). There
were three replicate enclosures per treatment combination and the response var-

iable was the number of egg masses per limpet in each enclosure.

The null hypotheses were as follows.

No difference between mean number of egg masses laid in each season,

pooling densities.

No difference in mean number of egg masses laid at each density, pooling

seasons.

No interaction between season and density, i.e. the effect of density on mean

numbers of egg masses laid is independent of season and vice versa.

Source df MS F P
Density 3 1.76 9.67 0.001
Linear | 5.02 27.58 <0.001
Quadratic | 0.24 1.29 0272
Season I 3.25 17.84 0.001
Density X season 3 0.06 0.30 0.824
Residual l6 0.18

There were no outliers and the residual plot (Figure 9.4(a)) did not suggest prob-

lems with assumptions. There was no evidence of an interaction (P=0.824, see

Figure 9.5(a)). There were significant effects of season (more egg masses in
winter/spring than summer/autumn) and density. The main effect of density was
further analyzed with orthogonal polynomials (see Chapter 8 and Section 9.2.10).

There was a significant negative linear trend in egg mass production with density

but no quadratic trend.

Quinn (1988) did a similar experiment at a lower level of the same shore where
the limpets were larger. Different densities were used (6, 12, 24) but the same two

seasons with three replicate enclosures per treatment combination. The null

hypotheses were the same as above, except that there were only three densities.
Again, the residual plot did not suggest any problem with variance heterogeneity

(Figure 9.4(b)).
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Source df MS F P
Density 2 2.00 13.98 0.001
Season | [7.15 [19.85 <0.001
Density X season 2 0.85 591 0.016
Density 6 vs 12 & 24 X season | [.53 10.66 0.007
Linear density X season I |44 10.07 0.008
Residual 12 0.14

There was a significant interaction between density and season (P = 0.016, Figure

9.5(b)). Treatment—contrast interaction tests showed that the comparison between

control density and increased density varied between seasons and the linear trend

in density was also significantly different between seasons. We also tested simple

main effects of density separately for each season.

Source df MS F P
Winter density 2 0.17 .21 0331
Summer density 2 2.67 18.69 <0.001
Residual 12 0.14

The effect of density was only significant in summer, not in winter. Note that the

original MS was used for both tests.

Residual

temperate mangrove forest. They chose two sites
about 600 m apart and at each site recorded the
density of oysters in four zones running up the
shore: seaward zone without mangrove trees,
seaward zone with mangrove trees, middle zone
with trees, and a landward zone at the upper
levels. In each of the eight combinations of site
and zone, they used five quadrats to sample
oysters (response variable) on the forest floor. An
additional study examined the distribution of
limpets on oysters on bent mangrove tree trunks.
They used two sites, three zones (obviously the
seaward zone without trees was not included) and
two orientations of mangrove trunk (upper facing
canopy and lower facing forest floor). This was a
three factor sampling design with five quadrats in
each of the 12 cells and densities of limpets per
oyster surface as the response variable. For both
designs, site was a random factor, representing all
possible sites within the mangrove forest, and
zone and orientation were fixed factors. The anal-
yses of these data are in Box 9.5.

9.2.1 Linear models for factorial designs
In the sections that follow, we will describe two
factor designs and their associated linear models.

Designs with more than two factors will be exam-
ined in Section 9.2.12. A two factor factorial
design is illustrated in Figure 9.2 with a factor
relationship diagram. Factor A has p groups (i=1
to p), factor B has q groups (j =1 to q) crossed with
each level of A and there are n, replicates (k=1 to
n) within each combination of A and B categories,
i.e. each cell. Note that every level of factor B is
crossed with every level of factor A and vice versa.
For the moment, assume the number of replicate
observations (1) in each combination of A and B is
the same. Unequal sample sizes will be discussed
in Section 9.2.6. There will be a total of pq cells in
this factorial design with n replicate observations
in each cell. From Quinn (1988), p was four limpet
density treatments (factor A), ¢ was two seasons
(factor B) and n was three enclosures within each
cell. From Minchinton & Ross (1999), p was four
zones (factor A), g was two sites (factor B) and n was
five quadrats within each cell.

We need to distinguish between two types
of means in multifactor crossed designs (Table
9.7).

* Marginal means are the means for the levels
of one factor pooling over the levels of the



