Anderson Rodrigo da Silva

Regressão linear simples

Regressä linear múltipla

Regressão Linear

Anderson Rodrigo da Silva

Instituto Federal Goiano

Regressão linear simple

Regressã inear múltipla

Regressão linear simples

2 Regressão linear múltipla

Anderson Rodrigo da Silva

Regressão linear simples

Regressã linear múltipla

Regressão linear simples

- A correlação mede apenas o grau de associação entre duas variáveis, mas não nos informa nada sobre a relação de causa e efeito de uma variável sobre outra
- Na correlação, ambas as variáveis são supostas aleatórias (variáveis resposta)
- Exemplo: qual será o efeito na produção vegetal quando se aumentar em uma unidade a dose de um fertilizante?
- Exemplo 2: conhecendo-se a relação entre severidade de uma doença e tempo, a severidade pode ser predita num tempo específico
- A idéia consiste em ajustar um modelo para uma variável resposta (Y) em função de uma variável explicativa (X)
- Adimitindo que a relação entre ambas é linear, podemos ajustar o modelo:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

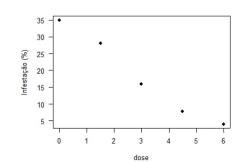
sendo β_0 e β_1 os parâmetros a serem estimados; ϵ é o erro aleatório associado a observação y

Regressã linear múltipla

Exemplo 1 - sem repetição

Tabela: Amostra de n = 5 parcelas experimentais nas quais foi avaliado o percentual de infestação por plantas daninhas monocotiledôneas após aplicação pós-emergencial de um herbicida seletivo.

Dose (L/ha)	0	1.5	3	4.5	6
Percentual	35	28	16	7.7	4



Regressão linear simples

Regressä linear múltipla

- Ajustar um modelo para predizer o grau de infestação (Y) em função da dose aplicada (X)
- Para tal precisamos: 1) estimar os parâmetros β_0 e β_1 , 2) testar a significância dos parâmetros, 3) verificar o ajuste do modelo

Regressã linear múltipla

Estimação de parâmetros

- Método dos mínimos quadrados
- Método da máxima verossimilhança

Mínimos Quadrados

O método consiste em obter estimativas para o vetor de parâmetros $\beta = [\beta_0 \ \beta_1]^T$ que tornem mínima a função (notação matricial)

$$\epsilon^T \epsilon = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

Igualando as derivadas parciais de $\epsilon^T \epsilon$ em relação à β , obtemos:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Análise de variância da regressão

Admitindo que $\epsilon \sim Normal(0, \sigma^2)$, o teste da hipótese $H_0: \beta_1 = 0$ pode ser feito através do teste F da ANOVA

Tabela: ANOVA da regressão

FV	GL	SQ	QΜ	F
Regressão	k	$\hat{oldsymbol{eta}}^T oldsymbol{X}^T oldsymbol{y} - oldsymbol{C}$		
Resíduo	n-k-1	$oldsymbol{y}^{oldsymbol{ au}}oldsymbol{y}^{oldsymbol{ au}}oldsymbol{eta}^{oldsymbol{ au}}oldsymbol{X}^{oldsymbol{ au}}oldsymbol{y}$		
Total	<i>n</i> – 1	$y^Ty - C$		

sendo k o n° de regressores ("x") no modelo. No caso da regressão linear simples, k=1.

Coeficiente de determinação simples (r^2)

O coeficiente de determinação é utilizado para medir o grau de ajuste do modelo de regressão linear simples.

$$r^2 = \frac{SQreg}{SQtotal} \in [0,1]$$

quanto mais próximo da unidade, melhor o ajuste.

Anderson Rodrigo da Silva

Regressão linear simples

Regressä linear múltipla

Exemplo 2 - com repetição

	Bloco					
Local	Dose	1			IV	Médias
Ipameri	0	35.9	41.5	32.8	36.5	36.7
	1	39.7	41.5	43.8	41.8	41.7
	2	43	39.8	44.9	47.8	43.9
	3	48.9	52.9	55.1	59.8	54.2
	4	52.8	56.8	59.8	60.1	57.4

```
Analysis of Variance Table
```

```
Response: TeorB

Df Sum Sq Mean Sq F value Pr(>F)

Bloco 3 67.91 22.636 2.4734 0.1116

DoseBoro 4 1213.18 303.294 33.1403 2.127e-06 ***

Residuals 12 109.82 9.152

---

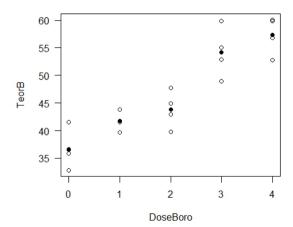
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Anderson Rodrigo da Silva

Regressão linear simples

Regressão linear múltipla

Exemplo 2 - com repetição



Regressão linear múltipla

A idéia consiste em ajustar um modelo para uma variável resposta (Y) em função de dois ou mais regressores $(X_1, X_2, ...)$

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \epsilon_i$$

sendo $\beta_0,\ \beta_1,\ ...,\ \beta_k$ os parâmetros a serem estimados; ϵ_i é o erro aleatório associado a observação y_i

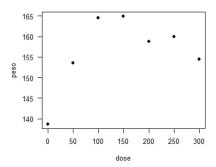
Exemplo: modelar a produção vegetal em função das doses de N, P e K

Regressão linear múltipla

Exemplo 1

Tabela: Peso de mil grãos de feijão sob efeito de doses de gesso (kg/ha)

Dose	0	50	100	150	200	250	300
Peso	138.6	153.6	164.5	164.9	158.7	159.9	154.4



Regressão linear simple

Regressão linear múltipla

Ajuste um modelo de regressão aos dados de severidade de determinada doença em função da temperatura do ar. Depois, realize a análise de variância da regressão.

Temperatura (°C)	2	1	5	5	20	20	23	10	30	25
Severidade (%)	1.9	3.1	3.3	4.8	5.3	6.1	6.4	7.6	9.8	12.4

Fonte: American Phytopathological Society (http://www.apsnet.org/)

Regressão linear múltipla

Exercício 2

Verifique se a dose de vinhaça (L/ha) afeta linearmente (p < 0.05) a produtividade (t/ha) de cada uma das três variedades de cana-de-açúcar. O modelo linear simples é adequado?

			Bloco)
Variedade	Dose de vinhaça	I	П	Ш
А	0	69	66	68
	500	72	70	71
	1000	70	73	71
	1500	66	64	67
В	0	65	67	64
	500	69	73	73
	1000	73	74	75
	1500	70	68	68
С	0	71	73	70
	500	76	79	77
	1000	77	79	76
	1500	74	75	76

Exercício 2

Dica: ao invés de montar a tabela convencional de ANOVA de um fatorial 3×4 , monte a tabela da seguinte forma:

FV	GL	SQ	QM	F
Bloco	2			
Variedade	2			
Dose/var.A	3			
Dose/var B	3			
Dose/var.C	3			
Resíduo	22			
Total	35			

Em que a fonte de variação **Dose/var.A** representa o efeito da dose de vinhaça sobre a produtividade da variedade A.