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ABSTRACT 

Turechek, W. W. 2004. Nonparametric tests in plant disease epidemiol-
ogy: Characterizing disease associations. Phytopathology 94:1018-1021. 

Nonparametric tests are suited to many statistical applications, includ-
ing experimental design, regression, and time series analysis, for example. 
Often these tests are thought of as alternatives to their parametric counter-
parts when certain assumptions about the underlying population are ques-
tionable. Although suited for this scenario, there are a number of non-
parametric tests that fill unique niches in the analysis of data, for example, 

characterizing interspecific associations. Quantifying the degree of as-
sociation between two or more pathogens or diseases at a defined spatial 
scale is essential to gain a thorough understanding of disease dynamics, 
generate testable hypothesis behind the mechanisms that cause associ-
ation, and is often necessary in modeling applications. In this paper, 
nonparametric approaches to characterizing interspecific associations will 
be covered. Specifically, I will address the use of rank correlation co-
efficients and the development of a randomization procedure for testing 
the Jaccard index of association against a null model. 

 
According to Hollander and Wolfe (5) “A nonparametric proce-

dure is a statistical procedure that has certain desirable properties 
that hold under relatively mild assumptions regarding the 
underlying populations from which the data are obtained.” Non-
parametric tests have several desirable properties including (i) no 
assumption that the underlying population follows a normal 
distribution; (ii) they are typically easier to apply than their para-
metric counterparts; (iii) they are often easy to understand; (iv) 
they are usually only slightly less efficient than their normal 
counterparts when the underlying distribution is normal; and (v) 
they are relatively insensitive to outliers. 

Nonparametric statistical tests are often thought of as “alterna-
tives” to their parametric counterparts when data do not conform 
readily to the assumptions of standard parametric tests. Although 
this is true to some degree, nonparametric procedures should not 
be thought of merely as alternatives to parametrical tests. There 
are nonparametric tests well suited to a number of applications 
including experimental design, regression, and time series analy-
sis. Indeed, there are a number of procedures that are uniquely 
nonparametric (e.g., randomizations and resampling statistics) 
that offer the analyst the tools needed to appropriately analyze 
their data where no parametric approach exists. 

In this paper, nonparametric tests of independence will be cov-
ered. Tests of independence have many applications in the 
biological sciences, including their use for quantifying interspeci-
fic (or species) associations. In plant pathology, these tests could 
be used to measure the degree to which two or more pathogens 
(10), or two or more diseases (13), are associated. Associations 
can be characterized based on two underlying properties: covaria-
tion and occurrence (7). Covariation is a measure of how one dis-
ease’s intensity (incidence or severity) increases or decreases in 

response to a change in intensity of another disease. Occurrence 
measures the degree to which two (or more) diseases occupy the 
same habitat (e.g., leaf, plant, field, region, etc.). Each property 
and the tests to measure them will be discussed in turn. 

Quantifying covariation. The property of covariation is 
characterized typically with correlation coefficients. Correlation 
coefficients are used to measure the strength of a relationship be-
tween two variables when neither variable can be assumed to be 
the “explanatory” variable. Pearson’s product moment correlation 
is perhaps the most common correlation coefficient and is applied 
appropriately when it can be assumed that a linear relationship 
exists between the two variables and that the variables are distrib-
uted according to a bivariate normal distribution. When these as-
sumptions are not met or cannot be assumed, Pearson’s product 
moment correlation should not be used and a nonparametric alter-
native should be sought. 

The two most commonly used nonparametric or so-called “rank 
correlation coefficients” are Kendall’s tau (τ) and Spearman’s rho 
(ρ). Kendall’s τ is derived from the closely related Kendall’s 
statistic (K). A symmetric confidence interval about τ is obtained 
easily from K, but the opportunity is taken here to also develop an 
alternative confidence interval through an application of Efron’s 
bootstrap. Spearman’s ρ is introduced next. This statistic is calcu-
lated exactly as Pearson’s product moment correlation except that 
the calculation is applied to rank transformed data rather than to 
the original. Spearman’s ρ is then contrasted to Kendall’s τ in the 
concluding remarks. 

Kendall’s test of concordance. Kendall’s test of concord- 
ance requires the data to consist of n bivariate observations 
(X1,Y1),…,(Xn,Yn), one observation on each of n subjects and as-
sumes that the n (X,Y) pairs are mutually independent and identi-
cally distributed according to some continuous bivariate distribu-
tion. The test can be expanded to the multivariate case, but this 
will not be covered here. 

Kendall’s test of concordance tests the null hypothesis that the X 
and Y variables are independent. The test statistic, K, is calculated 
as K = K′ – K′′, where K′ = the number of concordant pairs and 
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K′′ = the number of discordant pairs. An (X,Y) pair is said to be 
concordant if (Xi – Xj)(Yi – Yj) > 0, and discordant if (Xi – Xj)(Yi – 
Yj) < 0. This approach to calculating K is applicable when no ties 
exist among the X’s and no ties exist among the Y’s. Variations for 
calculating τ that account explicitly for ties exist (e.g., τB and τC); 
these will not be covered here. A simpler method for calculating 
K, however, is to simply count the number of concordant pairs 
(K′). This is easily done by ordering the pairs from lowest to 
highest by their X values and then counting the number of pairs 
for which the corresponding Y’s are in increasing order. The test 
statistic is then calculated: K = 2K′ – n(n – 1)/2. 

Either a one or two-sided test of τ (or equivalently K) is possi-
ble by comparing the calculated value of K to the appropriate 
critical value, kα, where kα is chosen to make the type I error α. 
Tabulated (critical) values of kα can be obtained from appendices 
in several nonparametric statistics textbooks for select sample 
sizes (n). 

The test statistic K can be used to derive a correlation coeffi-
cient known as Kendall’s sample rank correlation coefficient or 
Kendall’s τ. Like most correlation coefficients, Kendall’s τ as-
sumes a value between 1 and –1. The correlation coefficient can 
be calculated using τ = 2K/[n(n – 1)]. The upper and lower 
bounds of a symmetric confidence interval around τ with confi-
dence coefficient (1 – α) are calculated using 

σ+τ=τσ−τ=τ αα ˆ,ˆ 2/2/ zz UL
))
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where zα/2 is the value from a standard normal distribution such 
that Pr(Z ≥ z) = α/2 and 
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Because the confidence interval is based on a normal approxima-
tion, large sample sizes (n > 30) are generally required to assure 
the assumptions of the central limit theorem are met. 

Efron’s bootstrap. The confidence interval for Kendall’s τ de-
veloped above was based on obtaining a mathematical expression 
for the standard deviation for τ. For some statistics, however, it is 
difficult or impossible to obtain an expression for the standard 
deviation. Efron’s bootstrap is a general method for obtaining 
estimated standard deviations of statistics (estimators) and confi-
dence intervals for parameters without requiring a tractable ex-
pression for the standard deviation (2). 

Following Hollander and Wolfe (5), Efron’s bootstrap can be 
used to calculate a confidence interval as follows: (i) Denote the 
bivariate sample as Z1 = (X1,Y1), Z2 = (X2,Y2),…, Zn = (Xn,Yn). (ii) 
Make n random draws with replacement from the bivariate sam-
ple. This is equivalent to taking an independent random sample 
from the n pairs. A possible bootstrap sample of a data set with  
n = 11 may contain 1 copy of Z1, 3 copies of Z2, 0 copies of Z3, 0 
copies of Z4, 1 copy of Z5, 3 copies of Z6, 1 copy of Z7, and 1 copy 
each of Z8 and Z9, with each Zi being drawn with probability 1/n. 
Repeat step two B times. B should be a minimum of 100, but val-
ues of B closer to 1,000 (or even 10,000) are preferred. (iii) For 
each of the B draws compute τ. The B values can be denoted as 

Bτττ ˆ,...,ˆ,ˆ 21 . These are called the bootstrap replications. (iv) Order 
the bootstrap values from smallest to largest: )()2()1( ˆ,...,ˆ,ˆ Bτττ . A dis-

tribution-free confidence interval with approximate confidence 
coefficient 100(1 – α)% is 

)1()( ˆ,ˆ kB
U
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where )2(α= Bk . For example, if α = 0.1 and B = 1,000, k = 
1,000(0.05) = 50, the lower and upper bounds of the interval are 
the )50(τ̂  and )951(τ̂  observations of the ordered bootstrap replica-
tions, respectively. The bootstrap estimated standard error is 
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Spearman’s rank correlation coefficient. Spearman’s rank 
correlation coefficient (ρ) is another statistic used routinely for 
quantifying the property of covariation between two species. Like 
Kendall’s τ, values of ρ assume a number between 1 and –1. For 
Spearman’s rank correlation, data should be composed of n 
bivariate observations (X1,Y1),…,(Xn,Yn), one observation on each 
of n subjects. Use of the test assumes that the (X,Y) pairs are 
mutually independent and identically distributed according to 
some continuous bivariate distribution. To compute Spearman’s 
rank correlation coefficient, order the n X observations from least 
to greatest and let Ri denote the rank of Xi. Similarly, order the n Y 
observations from least to greatest and let Si denote the rank of Yi. 
Then, 
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where, Di = Ri – Si. 
Like τ, either a one or two-sided test of ρ is possible by 

comparing the calculated value of ρ to the appropriate critical 
value, ρα, where ρα is chosen to make the type I error α. Critical 
values of ρα can be obtained in appendices of several non-
parametric statistical textbooks. 

Quantifying occurrence. There are a number of simple 
ecological indices useful for characterizing the property of occur-
rence (6). One of the most widely used indices is the Jaccard in-
dex of association, J. Values of the Jaccard index range from 0 to 
unity, where values close to 1 are indicative of a high degree of 
association and values close to 0 are indicative of a low degree of 
association or, essentially, dissociation. The index is written as  
J = a/(a + b + c), where a represents the number of sampling 
units where both species (i.e., pathogens or diseases) occur, b 
represents the number of sampling units where only disease 1 is 
present, and c represents the number of sampling units where 
only disease 2 is present. The index simply represents the 
probability of both diseases occurring together in the population 
of sampling units where either disease occurs. 

Recently, Turechek and Madden (13) developed a nonparamet-
ric statistical procedure to test observed values of J against a “null 
value” of J, or in other words, against the expected value of J un-
der the null hypothesis of no association. A randomization proce-
dure was developed to derive a sampling distribution for J and the 
expected value of the index ( ranJ ) was calculated from this 
empirical sampling distribution. The jackknife procedure was 
used to estimate the standard error of J under the null hypothesis 
of no association. Each procedure will be covered in turn. 

Calculating the expected value of J. Let X = [x1,…,xi,…,xn]′ 
and Y = [y1,…,yi,…,yn]′ represent vectors of length n (i.e., the 
number of sampling units), in which xi and yi are binary variables 
representing the presence (1) or absence (0) of the component 
diseases in sampling unit i and the prime symbol denotes the ma-
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trix transpose operator. Thus, X and Y are equal length vectors of 
0’s and 1’s representing the presence and absence of the two dis-
eases of concern in a single data set. The n values of X and the n 
values of Y are separately rearranged at random, and the Jaccard 
index is calculated for the randomized data (Jj). This is repeated k 
times for a single data set. The mean or expected value of the 
Jaccard index is calculated using 

∑
=

=
k

j
jran kJJ

1
/  (10) 

That is, the value ranJ  represents the value of the index one would 
expect if the two component diseases were distributed independ-
ently given their observed incidences. 

The jackknife. A nonparametric estimate of the standard error 
of J can be obtained using the jackknife procedure (1). Following 
Turechek and Madden (13), the jackknifed standard error can be 
calculated as follows: (i) calculate the standard Jaccard coeffi-
cient (J) as described above; (ii) remove the first observation and 
recalculate the coefficient based on the remaining data points  
(J–1); (iii) repeat step two for each observation in turn in order to 
calculate n different J–i values; and (iv) calculate of the ith pseu-
dovalue (υi) for each observation as υi = J + (n – 1)(J – J–i). The 
jackknifed standard error of the Jaccard coefficient is then 
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A test for association. To test whether the observed Jaccard in-
dex is significantly different from the value calculated under the 
assumption of independence, a normal distribution is assumed for 
the index estimated by J (the observed Jaccard value) with stan-
dard error estimated by the jackknifed value, sj (8). A standard 
normal statistic can then be calculated using 

j
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Treating Z as a two-sided test, values of Z > 1.96 indicate signifi-
cant positive association and values of Z < –1.96 indicate signifi-
cant negative association or dissociation at P = 0.05. 

Conclusion. The nonparametric approach taken here for 
characterizing disease or interspecific associations draws upon a 
rather large set of tools used by ecologists of which only a few 
were demonstrated. Rank correlation statistics are used routinely 
to characterize the property of covariation. Although useful for 
characterizing this property, rank correlation statistics have other 
applications as well. For example, Turechek and Stevenson (14) 
used Kendall’s sample rank correlation coefficient to measure the 
degree of association between components of partial resistance to 
pecan scab caused by Cladosporium caryigenum. 

The most common question surrounding the use of these two 
correlation coefficients is “which of these should I use?” Spear-
man’s ρ and Kendall’s τ are, in general, measuring the same prop-
erty but imply different interpretations: ρ can be thought of as the 
regular Pearson’s product moment correlation coefficient applied 
to ranks. That is, ρ represents the proportion of variability that 
can be attributed to association between diseases. Kendall’s τ 
represents a probability; it is the difference between the prob-
abilities that two variables are in the same order versus that they 
are in different order (4,10). 

In general, the two statistics will seldom lead to different 
conclusions when applied to the same set of data. Spearman’s ρ is 
more sensitive to outliers than Kendall’s τ, but less so than Pear-
son’s coefficient (5). Kendall’s τ can also be used to derive partial 
correlation coefficients, whereas Spearman’s ρ cannot (12). From 
a computational viewpoint, Spearman’s ρ can be calculated in any 
statistical program that can calculate Pearson’s product moment 
correlation by simply calculating Pearson’s correlation on the 
rank transformed data. Kendall’s τ, on the other hand, is more 

difficult to calculate and usually requires a simple macro or some 
spreadsheet calculations to count the number of concordant pairs 
and to solve equation 3. 

There are at least 25 different ecological indices alone for char-
acterizing the property of occurrence (6). One reason for choos-
ing the Jaccard index over other indices is that the Jaccard index 
does not consider disease-free sampling units (“double zero”) in 
its calculation as an indication of association. Other indices, such 
as the Ochiai and Dice indices also do not use double zero sam-
pling units in their calculation (7,9). However, the Jaccard is sim-
pler to interpret. The Jaccard index simply represents the 
probability of encountering a sampling unit with both species 
(diseases) in the population of sampling units with either disease. 
Other indices, such as the Dice and Ochiai, use alternative 
weightings of the proportion of sampling units occupied by both 
species relative to sampling units occupied by only a single spe-
cies to measure association, making it difficult to interpret these 
indices biologically (7). 

In selecting the Jaccard index, however, one surrenders the op-
portunity to perform a simple, parametric test of the hypothesis of 
independence in lieu of, presumably, a more meaningful measure 
of association. Counting double-zero sampling units would allow 
the analyst to apply a simple-to-calculate chi-square test designed 
for two-way tables to test the null hypothesis of independence be-
cause the sampling distribution of this statistic is known. In the 
procedure described above, randomizations were used to derive 
an empirical, conditional sampling distribution for J and the jack-
knife was used to derive J’s standard error. 

The randomization algorithm, although computationally inten-
sive, is relatively easy to program in many spreadsheet or statisti-
cal software packages. One result of using randomizations is that 
the results are conditioned on the underlying properties of the 
data, which may or may not be well defined. For example, in 
most standard parametric procedures, independence among obser-
vations is a basic assumption. This assumption is not a require-
ment in order to apply randomizations. The fault, of course, is 
that a different sampling distribution is generated for every data 
set, although they are typically similar. Indeed, randomizations 
are best applied when several independent data sets are available 
for analysis. 

Lastly, although the jackknife was used to derive the standard 
error of J, the standard error could have just as easily been calcu-
lated using the bootstrap. Statisticians tell us that, in general, for a 
linear statistic there is no loss of information using the jackknife 
over the bootstrap; the bootstrap is preferred for nonlinear statis-
tics. One disadvantage of the bootstrap is that two different peo-
ple using the same data will not get the same bootstrap estimate 
of the standard deviation or confidence interval. This is not the 
case for the jackknife. It should be noted that the bootstrap cannot 
be applied indiscriminately, so interested readers should consult 
more detailed descriptions of the procedure before applying it in 
their own analyses (2,5). 

The analysis of interspecific associations is just one example 
where nonparametric procedures are well suited. Interested read-
ers who wish to explore the rich set of nonparametric tools avail-
able for other analyses are encouraged to consult textbooks 
(1,3,5,8,12) or review articles (4,11) on this topic. 
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