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The only relevant test of the validity of
a hypothesis is comparison of prediction
with experience.

Milton Friedman
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RESUMO

Teste da covariância genética via razão de produtos cruzados médios

Quando um fator genético está sendo estudado em mais de uma variável de resposta,
estimativas das covariâncias genéticas são essenciais, especialmente para programas de me-
lhoramento. Em uma análise de covariância genética, produtos cruzados médios devido
ao efeito genético, a partir do qual é obtida a covariância genética, e devido ao efeito
residual são obtidos. Estocasticamente, quantificar a magnitude da variação conjunta de
duas variáveis resposta devido ao efeito genético em relação à variação devida ao efeito
residual pode permitir realizar inferências sobre a covariância genética associada. Neste
estudo são apresentados testes de significância para a covariância genética de duas formas:
testes que levam em conta os efeitos genéticos e ambientais (ou residuais) e testes que
consideram apenas a informação genética. A primeira forma refere-se testes baseados na
razão de produtos cruzados médios via bootstrap não paramétrico e simulação de ma-
trizes Wishart pelo método de Monte Carlo. A segunda maneira de testar a covariância
genética refere-se a testes com base em uma adaptação das estatísticas de Wilks e Pil-
lai para avaliar a independência de dois conjuntos de variáveis. Para o primeiro tipo de
testes, as distribuições empíricas sob a hipótese nula, ou seja, covariância genética nula,
foram construídas e analisadas graficamente. Além disso, foi feito um estudo analítico da
distribuição da razão de produtos cruzados médios obtidos a partir de variáveis normal-
mente distribuídas com média zero e variância finita. Escrever algoritmos computacionais
em linguagem R para realizar os testes propostos também foi um dos objetivos deste
estudo. Apenas sob certas condições a função de densidade de probabilidade do produto
de duas variáveis aleatórias gaussianas aproxima-se da curva normal. Por conseguinte, o
estudo da distribuição da razão de produtos cruzados médios como um quociente de duas
variáveis gaussianas não é adequado. Os testes baseados na razão de produtos cruza-
dos médios estão relacionados tanto com o valor da covariância genética quanto com a
magnitude desta em relação à covariância residual. Ambas as abordagens (bootstrap e
simulação) mostraram-se mais sensíveis do que os testes baseados apenas nas informações
genéticas. O desempenho dos testes baseados na razão de produtos cruzados médios está
relacionado à qualidade dos dados originais em termos das pressuposições da MANOVA,
e a estatistica de teste não depende da estimação da matriz de covariâncias genéticas ΣG.
A adaptação das estatísticas de Wilks e Pillai pode ser usada para testar a covariância
genética. As aproximações à distribuição χ2

1 foi verificada. A precisão de suas inferências
está relacionada a qualidade da matriz G.

Palavras-chave: Correlação genética; MANOVA; Simulação de Monte Carlo; Bootstrap;
Lambda de Wilks
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ABSTRACT

On testing genetic covariance via the mean cross-products ratio

When a genetic factor is being studied for more than one response variable, estimates
of the genetic covariances are essential, specially in breeding programs. In a genetic
covariance analysis, genetic and residual mean cross-products are obtained. Stochastically,
to quantify the magnitude of the joint variation of two response variables due to genetic
effect with respect to the variation due to residual effect may allow one to make inferences
about the significance of the associated genetic covariance. In this study it is presented
tests of significance for genetic covariance upon a twofold way: tests that take into account
the genetic and environmental effects and tests that only consider the genetic information.
The first way refers to tests based on the mean cross-products ratio via nonparametric
bootstrap resampling and Monte Carlo simulation of Wishart matrices. The second way
of testing genetic covariance refers to tests based on adaptation of Wilks’ and Pillai’s
statistics for evaluating independence of two sets of variables. For the first type of tests,
empirical distributions under the null hypothesis, i.e., null genetic covariance, were built
and graphically analyzed. In addition, the exact distribution of mean cross-products
ratio obtained from variables normally distributed with zero mean and finite variance was
examined. Writing computational algorithms in R language to perform the proposed tests
was also an objective of this study. Only under certain conditions does the probability
density function of the product of two random Gaussian variables approximate a normal
curve. Therefore, studying the distribution of a mean cross-products ratio as a quotient
of two Gaussian variables is not suitable. Tests based on mean cross-products ratio
are related to both the value of the genetic covariance and the magnitude of the latter
relative to the residual covariance. And both approaches (bootstrap and simulation) are
more sensitive than the tests based only on genetic information. The performance of the
tests based on mean cross-products ratio is related to the quality of the original data
set in terms of the MANOVA assumptions, and the test statistic does not depend on
the estimation of the matrix of genetic covariances ΣG. The adaptation of Wilks’ and
Pillai’s statistics can be used to test the genetic covariance. Their approximations to a
χ2

1 distribution were checked and the accuracy of their inferences is related to the quality
of G.

Keywords: Genetic correlation; MANOVA; Monte Carlo simulation; Bootstrap; Wilks’
Lambda
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1 INTRODUCTION

In quantitative genetics, there are many important parameters when strategies of
conservation of natural genetic variability are determined (CARLINI-GARCIA et al.,
2001). Often, testing the significance of these parameters is an important issue. However,
during the estimation process the standard errors are not always supplied and there
is little information about the actual distribution of the estimates. Besides, obtaining
explicit expressions for these standard errors is not an easy task, since the estimators
are usually ratios of random variables with unknown distributions. The authors used
bootstrap resampling to estimate the probability distribution as well as the standard
error of genetic parameters. Likewise, Reis et al. (2009) studied additive genetic variance
from selected and non-selected populations using Monte Carlo simulation.

Testing genetic covariance would be of great benefit to plant and animal breeding,
since parameters directly related to the genetic covariance, such as the correlated response
to selection, are crucial to the adoption of a breeding selection method. According to
Guillaume e Whitlock (2007), the genetic covariance can be useful for predicting response
to indirect selection of one character from another. If the genetic covariance between two
characters is not null, selecting one will affect the response to selection on the other.

As in the analysis of variance when the interest is whether a genetic factor has
any effect on the variability of a particular response variable, in the analysis of genetic
covariance (ROBERTSON, 1959; KEMPTHORNE, 1969) one may attempt to identify
whether there is any significant effect of this factor on the joint variation of two particular
response variables. In this context, under the assumptions of the analysis of variance
model, it is known that the two variances (mean squares) obtained for the genetic and
residual effects both follow independent χ2 distributions, and therefore the ratio between
them produces an F variable, which can be used to assess the magnitude of the numerator
relative to its denominator. In the case of the analysis of genetic covariance or, more
broadly, in a multivariate analysis of variance, covariances (mean cross-products) are
obtained, also containing genetic and residual effects. The latter is sometimes called
environmental covariance. However, unlike a mean squares ratio, the distribution of a
mean cross-products ratio from normally distributed variables is still unknown.

In the literature only an approximate test of the genetic correlation coefficient is
available. The result of this test is commonly used to make indirect inferences about
the genetic covariance, resulting in higher approximation errors. Furthermore, Falconer
e Mackay (1996) stated that estimates of genetic correlations are usually subjected to
sampling errors, and therefore these estimates are seldom accurate. The authors also
pointed out that the sampling variance of a genetic correlation is quite complex. Some
authors (LEMOS et al., 1992; MALIK et al., 2005; BARROS et al., 2010; AJAYI et
al., 2014) have also tested genetic correlation through the Student’s t-test. Nevertheless,
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there is some misunderstanding about the degrees of freedom associated with the genetic
correlation, as verified by (FERREIRA et al., 2008). The authors stated that bootstrap
is a reliable way for testing genetic and environmental correlation. It is a fact that in
these hypothesis testing approaches only the genetic information is used. Hence, two
questions arise: 1) can the genetic covariance contribute more to the phenotypic variation
than the residual covariance, even when the genetic correlation is low? 2) is it possible to
test genetic covariance by considering its contribution to the phenotypic variation? The
answer to the first question is intuitive and straightforward. The answer to the second
provides the background of this study.

In this study it is presented tests for genetic covariance upon a twofold way: tests
that take into account the genetic and environmental effects and tests that only consider
the genetic information. The first way refers to tests based on mean cross-products ratio
via nonparametric bootstrap resampling and Monte Carlo simulation of Wishart matrices.
The second way of testing genetic covariance refers to tests based on an adaptation of
Wilks’ and Pillai’s statistics for evaluating independence of two sets of variables.

Because the first type consists of building empirical distributions under the null
hypothesis, i.e., null genetic covariance, these distributions were graphically analyzed.
Nonetheless, this work aims to study analytically the mean cross-products ratio obtained
from variables normally distributed with zero mean and finite variance.

Writing computational algorithms in R language to perform the proposed tests is
also an objective of this study.
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2 LITERATURE REVIEW

2.1 Genetic covariance and correlation

2.1.1 Importance and use

According to Resende (2002) in the context of plant breeding, understanding the
genetic correlation is particularly useful, especially for the implementation of indirect se-
lection on the characters that present difficulties of measurement, identification and/or
low heritability. Selecting another character more easily assessed and with high heritabil-
ity provides greater genetic progress, saving time, labor and resources.

Evolution by natural selection requires heritable variation and the most common
way of representing the pattern and magnitude of the genetic basis of a number of char-
acteristics is through the matrix G of genetic variances and covariances. As G contains
additive genetic covariances information, it may be useful to predict the indirect response
to selection of a character from another. If the covariance between two characters is differ-
ent from zero, select one will affect the response to selection on the other (GUILLAUME;
WHITLOCK, 2007).

Robertson (1959) reports that for continuous genetic variables, the correlation coef-
ficient between two characters is an integral part of the discussion of correlated responses
to selection and the combination of different measures ensures maximum improvement,
then called selection index.

According to Falconer e Mackay (1996), correlated traits are of interest for three
main reasons. First, in connection with genetic causes of correlation via pleiotropy1,
leading cause of genetic correlation and property common to the main genes. Second,
in connection with the changes caused by selection, since it is important to know how
improving a character will cause simultaneous changes in another character. And third, in
connection with natural selection, since the relationship between a metric character and
adaptation are primary agents determining the properties of this character in a natural
population.

The association between two characters can be directly observed by the correlation
among phenotypic individual values, that is, the phenotypic correlation. Knowing the
genotypic values and environmental deviations for both characters, one can access inde-
pendently the genetic and environmental causes of the correlation. If, in addition, genetic
values of individuals are known, then it is possible to separate the variance of a character
into two parts, additive genetic versus the rest (environmental), i.e., environmental and
non-additive genetic deviations. Thus, the phenotypic covariance (σP ) can be taken as
the sum of the genetic (σG) and environmental (σE) covariances, i.e.,

1Property of a gene through which affects two or more characters.
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σP = σG + σE (1)

The genetic correlation explains the additive components (heritable part of the as-
sociation) and the environmental correlation, the non-additive components. They deter-
mine the phenotypic correlation calculated from measurements of the characteristics in
the population (KOMINAKIS, 2003).

The genetic covariance between characters from a population of random crosses
can be maintained in two ways: through gene with pleiotropic (multiple) effects and via
linkage disequilibrium (statistical dependence) among alleles at different loci affecting
different characters (LANDE, 1980; MEREDITH, 1984).

For genetic breeding, specifically for quantitative genetics, the knowledge of genetic
covariance (or correlation) is of great importance in the following contexts:

• Indirect selection or prediction of gain by correlated response to selection;

• Development of selection indices to select multiple characters simultaneously;

• Using breeding strategies in accordance with the determination of the extension of
the genotype-environment interactions;

• Understanding the evolutionary process of characters.

According to Wootton e Smith (2014), genetic correlations combined with selection
provide a measure of response of direct causal relationship among life-history traits, and
thereby a qualitative measure of response to selection. In this context, they are superior
to purely phenotypic correlations. The limitations of genetic correlation studies are that
the outcomes may be specific to the environment in which they are conducted.

Vencovsky e Barriga (1992) emphasize that one of the most important implications
of the correlations relates to selection. So it is worth asking, for example, what will be the
change in the average of the character Y when selecting for the character X? In recurrent
selection involving the additive effects of alleles, this indirect change is given by

RCY,X = dsX ×

σG(X,Y )

σ2
P (X)

× a, (2)

where RCY,X is the correlated response to selection in Y when selecting the character X;
dsX is the selection differential related to X; σG(X,Y ) is the genetic covariance between X
and Y ; σ2

P (X) is the phenotypic covariance of X; the coefficient a depends on the scheme
of selection adopted.

The authors also point out that a genetic breeding program on Y can be obtained
more efficiently by selecting only X. That is the situation where RCY,X > GsY , being GsY

the expected progress value on Y , which is not common, but could happen in recurrent



21

selection when ĥXrG > ĥY (FALCONER; MACKAY, 1996), where ĥ. represents the
square root of the narrow-sense heritability coefficient (only the additive part), i.e., when
the selection does not explore all the genetic variance.

2.1.2 Analysis of genetic (co)variance

The analysis of genetic covariance is a procedure analogous to the analysis of variance
when the goal is to check whether the genetic variation in the population of genotypes
being assessed is not null, with the difference that the first considers two or more variables
simultaneously.

Data from experiments of evaluations of genotypes, as in many agronomic experi-
ments, usually consist of observations of several variables, which are seldom considered
independent from each other. In cases where there is interdependence among variables,
analyses of variance and genetic covariance would be more informative in assessing ge-
netic and other experimental effects of interest, because the information of covariances
(or mean cross-products) associated with each source of variation is taken into account.

According to Dutilleul e Carriere (1998), the two-way analysis of variance with
genotype and environment as crossed factors is the usual basis for estimating genetic
correlation (and covariance), as presented by Robertson (1959) and Kempthorne (1969),
as follows.

Consider performing the analysis of genetic covariance, say for two variables X
and Y . It is perfectly possible to consider the composed observation x + y for each
observational unit and do the usual analysis of variance for both variables, and also for
the dummy variable X+Y . The formulas used to obtain the mean squares can be applied
to obtain variance components associated with X + Y . Thus, it follows that

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ), (3)

then,

σ2
h(X+Y ) = σ2

h(X) + σ2
h(Y ) + 2σh(XY ), (4)

where σ2
h(X+Y ), σ2

h(X) e σ2
h(Y ) are the variance components of X+Y , X and Y , respectively,

assigned to the source h; σh(XY ) is the covariance component of X and Y assigned to the
source h.

Thus, the estimate of the covariance component σXY can be obtained by

σ̂h(XY ) =
σ̂2
h(X+Y ) − σ̂2

h(X) − σ̂2
h(X)

2 , (5)

at which the variance components are determined using the Method of Moments2.
2Method of estimation that consists of matching r sample moments to their respectives populational,
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Kempthorne (1969) highlights that the procedure serves completely to define the
estimation of covariance components. For example, consider data of two variables, say X
e Y , from an experiment carried out under a randomized block design where g genotypes
were evaluated on r blocks. For Y (also valid for X), the random model of analysis of
variance would be

yij = µ+ αi + βj + εij, (6)

where,
yij is the observation of Y for the i-th genotype at the j-th block;
µ is the population mean of Y ;
αi is the random effect associated with the i-th genotype (i = 1, 2, ..., g);
βj is the random effect associated with the j-th block (j = 1, 2, ..., r);
εij is the effect of the random error related to yij.

The scheme of a analysis of genetic covariance for X and Y could be summarized
in Table 1.

Table 1 – Analysis of genetic covariance for X and Y in a randomized block design

Source Degrees of
Mean squares

Mean cross-products
freedom X Y Z∗

Blocks r − 1 QBX QBY QBZ PBXY = 1
2(QBZ −QBX −QBY )

Genotypes g − 1 QGX QGY QGZ PGXY = 1
2(QGZ −QGX −QGY )

Residuals (g − 1)(r − 1) QRX QRY QRZ PRXY = 1
2(QRZ −QRX −QRY )

∗Z = X + Y

The expected values of the mean squares for X are presented in eq. 7. The same is
valid for Y and Z = X + Y .

E(QBX) = σXX + gσB(XX)

E(QGX) = σXX + rσG(XX)

E(QRX) = σXX

(7)

where σXX , σB(XX) and σG(XX) are the residual variance, the variance due to block effects
and the genetic variance of X, respectively.

The expected value of the mean cross-products are:

forming a system of r equations. In the analysis of variance it is used to estimate variance components,
matching mean squares to their respectives expected values.
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E(PBXY ) = σXY + gσB(XY )

E(PGXY ) = σXY + rσG(XY )

E(PRXY ) = σXY

(8)

where σXY , σB(XY ) and σG(XY ) are the residual covariance, the covariance due to block
effects and the genetic covariance between X and Y , respectively.

As early described, obtaining the expected values allows one to estimate (co)variance
components related to each source. Then,

σ̂XX = QRX

σ̂XY = PRXY

σ̂B(XX) = 1
g
(QBX −QRX)

σ̂B(XY ) = 1
g
(PBXY − PRXY )

σ̂G(XX) = 1
r
(QGX −QRX)

σ̂G(XY ) = 1
r
(PGXY − PRXY ),

(9)

where the latter equation expresses the moments estimator of the genetic covariance
between X and Y . Therefore, the genetic correlation can be calculated by

ρ̂G(XY ) = σ̂G(XY )(
σ̂G(XX)σ̂G(Y Y )

)1/2 . (10)

And the residual correlation is obtained by

ρ̂R(XY ) = σ̂XY

(σ̂XX σ̂Y Y )1/2 . (11)

The analogy with the familiar formula of correlation coefficient is clear. The genetic
covariance between two phenotypes is quite distinct from the genetic correlation. It
is possible for two traits to have a very high genetic correlation yet have little genetic
covariance. Low genetic covariance could arise if either trait had low genetic variance
(NEALE; CARDON, 1992).

Now, an important question is whether the genetic covariance is significant, i.e.,
whether the joint variation between X and Y due to genetic effects is greater than that
due to environment (residuals) on the population, so that quantities such as the corre-
lated response to selection (eq. 2), directly related to genetic covariance, has an effective
meaning.
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2.1.3 Genetic correlation test

Estimates of genetic correlation are usually subjected to very large sampling errors
and therefore these estimates are rarely accurate, as state by Falconer e Mackay (1996).
The authors also point out that the sample variance of a genetic correlation is complicated
and, considering two characters, X and Y for example, it has the following approximate
formula (derived from Reeve (1955) and Robertson (1959)) for the standard error of the
additive genetic correlation (rG):

σ(rG) = 1− r2
G√

2

√
σ(h2

X)σ(h2
X)

h2
Xh

2
Y

, (12)

where σ denotes standard error; h2
X e h2

Y are the narrow-sense heritability for the variables
X and Y , respectively.

Waitt e Levin (1998) state that genetic correlations are often difficult (require large
sample sizes of individuals of known relatedness) or impossible (rare, endangered or ex-
tinct species) to obtain (CHEVERUD, 1988). In comparison, phenotypic correlations are
easily and accurately estimated requiring only moderate sample sizes and no knowledge
of relatedness among individuals. Roff (1995) states that sample sizes required to achieve
a small standard error for genetic correlations are typically enormous. Nonetheles, ac-
cording to Lynch e Walsh (1998), the Delta Method3 is considered better for estimating
the variance of a ratio of unknown distributions.

Zeng et al. (2007) estimated the genetic correlation between yield and fiber quality
of Gossypium species using the methodology described by Kempthorne (1969). However,
the significance was not determined, because there was no adequate probability table
available for a statistical test of genetic correlation. Lemos et al. (1992) used the same
estimation procedure to estimate genotypic, phenotypic and environmental correlations
among maize variables. The authors performed the Student’s t-test to access significance.
Likewise, and Barros et al. (2010) also tested genetic correlations among maize variables
by using the Student’s t-test. Ajayi et al. (2014) tested genotypic correlations among
cowpea variables using the t-test.

According to Ferreira et al. (2008), there is no accurate test to assess the significance
of genetic correlations, and the hypothesis that this coefficient is zero can not be evaluated
with the usual t test on n − 2 degrees of freedom. The estimate of genetic correlation
is obtained for the mean square due to genotype and residual, each associated with a
different number of degrees of freedom, which makes difficult to establish the degrees
of freedom associated with the estimate of the genetic correlation. The authors stated
that the bootstrap method has high reliability and lends as an appropriate and useful
procedure that can be adopted for breading purposes to test the significance of genotypic

3For more details, see Appendix 1 of Lynch e Walsh (1998) or see Casella e Berger (2002).
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and environmental correlations.

2.2 Simulation-based tests

According to Waller et al. (2003), the basic idea of empirical tests is a very simple
one and essentially operationalizes frequency-based statistical inference. Suppose one
wishes to test a certain null hypothesis. One selects some test statistic denoted S and
calculates its value for the observed data, say s. Under the null hypothesis, S will follow
a probability distribution based on the randomness generated within the model. One
determines the weight of statistical evidence against H0 (the statistical significance of the
observed value) by assessing how consistent the observed value appears to be with the
distribution of the test statistic S given that the null hypothesis is true. Thus, the p-value
represents the probability under the null hypothesis that the test statistic S (a random
variable) exceeds the observed value s. A Monte Carlo test is simply a computational
implementation of this concept. One generates a large number, say nsim, of independent
realizations from the model and calculates the observed value of S for each realization,
denoted si, i = 1, ..., nsim. A histogram of the values associated with the simulated data
sets (s1, ..., snsim) provides an estimate of the probability density of the test statistic under
the null hypothesis.

Waller et al. (2003) used Monte Carlo simulations for accessing the goodness-of-
fit for ecologic simulation models. The authors concluded that Monte Carlo methods
offer an approach to draw statistical inference beyond just mean (average) behavior from
ecological simulation models, particularly when realizations of such models violate many
traditional statistical assumptions (e.g. independence). In order to evaluate equality of
covariance matrices, Goodnight e Schwartz (1997) used bootstrap methods. Viana et al.
(2000) tested the association of Trichocereus pasacana (Cactaceae) with potential nurse
plants via data randomization procedures.

Monte Carlo testing is similar ‘in spirit’ to permutation tests (FISHER, 1935) and
nonparametric bootstrap hypothesis tests (EFRON; TIBISHIRANI, 1993). However, per-
mutation tests, their randomized counterparts, and bootstrap tests typically involve re-
sampling the observed data in some manner, while Monte Carlo tests involve the gener-
ation of new data under the null hypothesis. Parametric bootstrap methods are based
on the same concept as Monte Carlo tests. According to Efron e Tibishirani (1993), the
difference between Monte Carlo and bootstrapped p-values will often be small.

An example of a simulation-based test is the Fisher-Pitman permutation test (PIT-
MAN, 1937), which can be an alternative to the F-test when analyzing differences among
independent samples with unequal variances (BOIK, 1987; BERRY et al., 2002). An-
other example is Mantel (1967) test, which consists of a permutation test used to verify
a linear relation between distance matrices. Manly et al. (1986) proposed a randomiza-
tion procedure for comparing the means of two or more groups with respect to several
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variables.
According to Good (2006), the power of permutation tests is quite high and for

small samples, a permutation test may be the most powerful test available. On the
other hand, for very large samples, a permutation test will be as powerful as the most
powerful parametric test. Manly (2007) states that when data are obtained from non-
standard distributions, there is some evidence to suggest that randomization tests have
more power than classical (parametric) tests.

2.3 Bootstrap

The bootstrap technique was first systematically considered by Efron (1979) as a
basic computational method to estimate the standard error of an estimator θ̂ based on
random data sample, whose probability distribution is known (EFRON; TIBISHIRANI,
1993), although the general idea of the method has been used before. The authors com-
ment that the bootstrap estimate for the standard error does not require any theory cal-
culation, however complicated can be θ̂ from a mathematical point of view. According to
Goodnight e Schwartz (1997), the power of the bootstrap approach lies in its adaptability
to complex designs, in its freedom from assumptions (usually balance and normality).

The essence of bootstrap resampling is the idea that, in the absence of any knowledge
about the population, the distribution of values in a random sample of size n from this
population is the best ‘guide’ for the distribution of the population values. In other
words, the n observed sample values, each with probability 1/n, are used for modelling
the population. The sampling is done with replacement, and it is the only practical
difference between the bootstrap resampling and randomization in many applications
(MANLY, 2007).

2.3.1 Data generation process

The procedure for generating the bootstrap samples is called bootstrap data gener-
ating process, or simply bootstrap DGP. Some bootstrap DGPs may be fully parametric,
others may be fully nonparametric, and still others may be partly parametric. What
choices are available depend on the model being estimated and on the assumptions that
the investigator is willing to make.

To describe the nonparametric bootstrap DGP, considere F̂ the empirical distribu-
tion function of the observed data vector x = (x1, x2, ..., xn), with probability 1/n for
each xi. Now consider the statistic θ̂ = f(x) of interest. A bootstrap sample is defined as
a random sample of size n obtained from F̂ , denote x∗ = (x∗1, x∗2, ..., x∗n), i.e., a random-
ized with replacement version of x. Corresponding to this bootstrap sample, there is an
estimator θ̂∗ = f(x∗).

According to Efron e Tibishirani (1993), the algorithm used to obtain the bootstrap
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standard error consists of:

1. Obtaining B independent bootstrap samples, x∗1,x∗2, ...,x∗B, each one of size n.

2. Evaluating the statistic of interest for each bootstrap sample

θ̂∗(b) = f(x∗b), b = 1, 2, ..., B. (13)

3. Estimating the standard error seF (θ̂) as the standard deviation from theB bootstrap
estimates

ŝeboot(θ̂) =
(

1
B − 1

B∑
b=1

[
θ̂∗(b)− ¯̂

θ∗
]2
) 1

2

(14)

where ¯̂
θ∗ = 1

B

B∑
b=1

θ̂∗(b).

The reason why it is called nonparametric bootstrap is due to the fact that estimates
are based on F̂ , an empirical distribution function, i.e., not derived from a parametric
model for the data.

The number B of resampling usually vary from 25 to 200, according to Efron e
Tibishirani (1993). On the other hand, Krzanowski (2000) stated that common values
for B used in practice range between 100 and 1,000, depending on the complexity of the
estimator being studied. Nonetheless, Manly (2007) presents some calculation methods
and discussions on how many randomizations are needed considering the significance level
of the test.

Regarding to the quality of the bootstrap estimator, Casella e Berger (2002) com-
ment that in many cases the technique offers a reasonable estimator, which is consistent.
Precisely, they establish

ŝeboot(θ̂) B→∞→ seF (θ̂). (15)

2.3.2 Bootstrap inference

The bootstrap resampling method in its simplest form has been used to compute
confidence intervals for population quantities or to build significance tests. Two methods
of obtaining bootstrap confidence intervals are widely used. The first is based on per-
centiles, where the limits are calculated directly from the empirical distribution. It turns
out that the distribution of these estimates is often asymmetric, as it is based on a single
sample, making the confidence interval biased. There is, however, an alternative method,
the bias-corrected and accelerated.

Another method to build bootstrap confidence intervals consists of using quantiles
from the standard normal distribution to modify the lower and upper limits of the interval
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(QUINN; KEOUGH, 2010). Under most circumstances, it is seen that for a large n, the
distribution of θ̂ becomes more and more normal, with mean θ and standard error ŝeboot
(MANLY, 2007). Thus, the following probability statement is valid:

Pθ(θ̂ − zα/2ŝeboot ≤ θ ≤ θ̂ + zα/2ŝeboot) = 1− α,

where zα/2 is the percentile 100(1−α/2)% from the standard normal distribution. Hence,
a 100(1− α)% boostrap confidence interval for θ can be obtained by

θ̂ ± zα/2ŝeboot. (16)

This result can also be used to build significance tests for θ, since the following
relationship is verified

θ̂ − θ
ŝeboot

d→ N(0, 1). (17)

2.4 Monte Carlo simulation

According to Manly (2007), a Monte Carlo significance test for an observed test
statistic is accessed by comparing it to a vector of sample test statistics obtained by gen-
erating random samples from some assumed model. If the assumed model implies that all
sorted data are equally likely, then it works like a randomization test with random sam-
pling from the randomization distribution (empirical distribution). Thus, the bootstrap
resampling technique can be thought of a Monte Carlo method applied in a particular
way.

Henderson (1985) stated that for breeding purposes, some genetic evaluation me-
thods are less vulnerable to selection effects than others, what makes necessary to make
a comparison between them. The author suggests data simulation as an alternative,
specially when the involving field data require difficult mathematical manipulations.

2.4.1 Generating random numbers

Monte Carlo methods are heavily dependent on how quickly and efficiently is the
production of random numbers (LANDAU; BINDER, 2009). According to Caflisch (1998)
and Gamerman e Lopes (2006), most of the methods used to generate pseudo-random
numbers are linear congruential methods.

Random variables used in the Monte Carlo methods are generated by a pseudo-
random number generator. This is because a computer program itself is not random. A
pseudo random number generator simulates randomness without actually being random.
However, the pseudo random numbers are generated so that they have many of the ran-
dom number sequence properties (NIEDERREITER, 1992). Gamerman e Lopes (2006)
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highlights these important basic properties: uniformity and independence.
The pseudo-random number generators produce uniformly distributed variables.

Not uniform variables can be generated by transforming uniform variables using, for ex-
ample, the Probability Integral Transformation method4. For a summary of this method,
consider generating values of X, a continuous random variable with FX distribution func-
tion and one defines the random variable U = FX(X). Hence, U is uniformly distributed
in the interval [0, 1], that is P (U ≤ u) = u. If FX is strictly increasing, then its inverse,
F−1
X , is defined by

F−1
X (u) = x ⇔ FX(x) = u. (18)

This way, generating U1, U2, ..., Un independent random variables from the standard
uniform distribution, we get Xi = F−1

X (Ui), for i = 1, 2, ..., n independent and identically
distributed (i.i.d.) random variables with density fX .

This is a very convenient method, but not necessarily easy to implement because of
the difficulties that can arise when computing the inverse F−1

X . This would be the case,
for example, when generating χ2

1 variables. Some difficulty is also found in obtaining the
inverse of N(0, 1) distribution, being necessary to compute the error function5. For the
latter distribution as well as for some other probability distributions, special transforma-
tions are an useful alternative to the probability integral transformation. The simplest
among these methods is the Box-Muller algorithm (BOX; MULLER, 1958).

2.4.2 Simulating multivariate normal

To generate a p-dimensional normal variable, we start with the generation of p
independent unidimensional variables. For this, one can use the Box-Muller algorithm,
which in one process generates two independent standard normal variables, say Z1 and
Z2, from two independent uniform variables, say U1 and U2. The algorithm formulas are:

R =
√
−2 ln(U1)

Θ = 2πU2

Z1 = R cos(Θ)

Z2 = R sin(Θ)

(19)

Thus, it is possible to generate several pairs of independent standard normal vari-
ables by generating the same number of pairs of independent standard uniform variables.

4The proof of the Probability Integral Transformation Theorem can be found at Casella e Berger
(2002).

5For further details, see Caflisch (1998).
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The generation of p-dimensional normal with any positive definite6 scale matrix
can be done using the Cholesky decomposition7, as follows: consider simulating X ∈ <p a
random variable withNp(0,Σ) distribution. Via Cholesky decomposition we get Σ = LL′,
where L is lower triangular. Note that L does exist because Σ is symmetric and positive
definite. Now, consider Z ∈ <p a random vector consisting of p independent standard
normal variables. Then, the covariance matrix of Z is I (the identity). Therefore,

X = LZ. (20)

Thus, X is a p-dimensional normal vector with covariance matrix

Cov(X) = LIL′ = Σ.

To get a normally distributed random vector with mean µ, simply take X = LZ+µ.
The simulation of multidimensional normal variables with a particular structure Σ of

variances and covariances is of special interest for generating Wishart matrices, especially
when studying the distribution of variances-covariance sample matrices.

2.5 Wishart distribution

Wishart matrices occupy a central place in the development of multivariate theory
and applications (GHOSH; SINHA, 2002). According to Gauthier e Possamai (2009),
in financial mathematics Wishart processes have emerged as an efficient tool to model
stochastic covariance structures. Gelman et al. (2004) stated that an inverse-Wishart
distribution is used often in Bayesian modeling because it is a proper conjugate prior for
an unknown covariance matrix in a multivariate normal model. Vester e Waal (2015) used
Wishart distribution for modeling the volatility of a rainfall indicator.

2.5.1 Derivation

In the univariate theory, if x1, x2, ..., xn are a sequence of independent and identically
distributed (i.i.d.) random variables, each having N(0, σ2) distribution, then 1

σ2
∑
x2
i has

a chi-squared distribution on n degrees of freedom, denoted χ2
n. The multivariate case

occurs when x1,x2, ...,xn form a sequence of independent p-variate random vectors, each
with distribution Np(0,Σ). From these vectors a symmetric matrix C of dimension p

can be defined by C = ∑n
i=1 xix′i, whose main diagonal contains sum of squares, whereas

the off-diagonal elements correspond to sum of cross-products. The joint distribution of
6A symmetric matrix, say A, is called positive definite if all its eigenvalues are positive. Denote A > 0.
7Cholesky decomposition of factoration receives the name of its creator, André-Louis Cholesky, and

is often used to solve the normal equations in problems of least square or in Monte Carlo methods to
simulate systems with multiple correlated variables. A variation of Cholesky decomposition is the form
A = R′R, where R is upper triangular (the Cholesky triangle). For more details, see Golub e Loan
(1996).
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all elements of C (or simply the distribution of C) was obtained by Wishart (1928) and
is called p-variate Wishart distribution with n degrees of freedom and scale parameter
Σ, denoted Wp(n,Σ) (KRZANOWSKI, 2000). If p > n then Wp(n,Σ) is called singular
Wishart distribution (COOK, 2011).

Being S a sampling variance-covariance matrix (supposed to be positive definite),
obtained from n independent random vectors with distribution Np(0,Σ), then (n−1)S ∼
Wp(n− 1,Σ). The probability mass function of S can be writen as follows (adapted from
Anderson (2003)):

fS(S|Σ, n− 1) = |S|n−p−2
2 e−tr(Σ

−1
S)/2

2
p(n−1)

2 π
p(p−1)

4 |Σ|n−1
2
∏p
j=1 Γ

(
n−j

2

) , S > 0, (21)

where Γ(.) is the gamma function and tr(.) the trace function.

2.5.2 Properties

Wishart distribution can be understood as a multivariate generalization of a chi-
squared distribution. Indeed, many of its properties are either bound up with χ2 or
mirror those of the χ2 distribution. Some of them, more interesting to this study, are
listed here.

1. If p = 1, then C =
n∑
i=1

x2
i , where xi are i.i.d. N(0, σ2). Hence W1(n, σ2) ∼ σ2χ2

n.

2. If C1 and C2 are independent with C1 ∼ Wp(n1,Σ) and C2 ∼ Wp(n2,Σ), then
C1 + C2 ∼ Wp(n1 + n2,Σ).

3. IfB is any (q×p) matrix of constants and C ∼ Wp(n,Σ), then BCB′ ∼ Wq(n,BΣB′).

4. If b is any p-variate vector of constants and C ∼ Wp(n,Σ), then b′Cb ∼ σ2χpn,
where σ2 = b′Σb.

5. If C ∼ Wp(n,Σ) then C−1 is said to have inverted Wishart distribution with the
same parameters, denoted by IWp(n,Σ).

For the following properties, consider cij as the element at the i-th row and j-th
column of the matrix C and σij as the element at the i-th row and j-th column of
the matrix Σ, admitted C ∼ Wp(n,Σ).

6. The correlation coefficient can be obtained by rij = cij/
√
ciicjj.

7. E(C) = nΣ and V ar(cij) = n(σ2
ij + σiiσjj).

8. If σij = 0, then rij
√

n−1
1−r2

ij
is distributed as t-Student on n− 1 degrees of freedom.
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9. 1
2 ln

(
1+rij
1−rij

)
is asymptotically normally distributed with mean 1

2 ln
(

1+ρij
1−ρij

)
and vari-

ance 1
n−2 , where ρij = σij/

√
σiiσjj.

For further details about these properties, see Johnson e Kotz (1972), Mardia et al.
(1979), Krzanowski (2000).

2.6 Wilks’ Lambda distribution

Wilks (1932) Lambda statistic is widely used for various statistical tests in multivari-
ate analysis since it, supposedly, plays the same role as the Fisher–Snedecor F univariate
statistics (PHAM-GIA, 2008).

Consider C0 ∼ Wp(n0,Σ) and C1 ∼ Wp(n1,Σ), two independent Wishart matrices
of order p, where n0 ≥ p and n1 ≥ p. The generalized likelihood ratio

Λ = |C0|
|C0 + C1|

0 ≤ Λ ≤ 1 (22)

is called Wilks’ lambda. Its distribution depends only on three parameters: p is the order
of the matrices, n0 is typically the residual degrees of freedom and n1 is the hypothesis
degrees of freedom. We denote the pdf of the Wilks’ lambda distribution by Λ(p, n0, n1).

The exact distribution of Wilks’s statistic is difficult to track, because, so far, its
density lacks a closed form expression, except for some simple values of its parameters
(SCHATZOFF, 1966). According to Pham-Gia (2008) and Timm (2002), it was estab-
lished that Wilks’ Lambda has the same density as a product of independent univariate
beta variables on (n0 − i + 1)/2 and n1/2 degrees of freedom for i = 1, 2, ..., p. For cer-
tain special cases, the Wilks’ Lambda distribution reduces to an F distribution, but in
general its use is quite complicated, as it is a function of three parameters (p, n0 and
n1). Nonetheless, various approximations has been obtained and are useful in practice
(KRZANOWSKI, 2000). Bartlett (1947) showed that

−
(
n0 + n1 −

p+ n1 + 1
2

)
loge Λ(p, n0, n1),

is asymptotically a χ2
n1p. An F -approximation is given by Rao (1952).

2.7 Using Wilks’ Lambda for testing independence of sets of variables

Consider a random vector x with k-variate normal distribution, Nk(µ,Σ). Suppose
partitioning x into two subvectors of interest, say x1 and x2, with resulting dimensions p
and q, respectively, where p+q = k. The corresponding partitioning population covariance
matrix is

Σ =

Σ11 Σ12

Σ21 Σ22

,
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with analogous partitioning of the estimate S:

S =

S11 S12

S21 S22

.
The hypothesis of independence of x1 and x2 can be expressed by

H0 : Σ =

Σ11 0

0 Σ22

.
It means that every variable in x1 is independent of every variable in x2. Note that

there is no restriction on Σ11 and Σ22. The likelihood ratio test statistic (WILKS, 1935)
for H0 is given by

Λ = |S|∣∣∣S(H0)

∣∣∣ = |S|
|S11| |S22|

0 ≤ Λ ≤ 1 (23)

which is distributed as Λ(p, q, n− 1− q) or, equivalently, Λ(q, p, n− 1− p). Thus, Wilks’
Λ compares an estimate of Σ without restriction to an estimate of Σ under H0 : Σ12 =
ΣT

21 = 0. Then, a value of Λ near zero indicates high correlation between x1 and x2,
whereas a value near one indicates low correlation.

There are pq constraints in the specification of H0, so if the null hypothesis is true,
then an approximation to a chi-square distribution is given by

−n loge Λ d→ χ2
pq (24)

According to Krzanowski (2000), the χ2 approximation can be improved on replacing
n by n′ = n− 1

2(p+ q + 3).
An asymptotically equivalent test statistic is presented by the Pillai (1955):

Tn = tr
(
S−1

11 S12S−1
22 S21

)
(25)

Under H0, nTn d→ χ2
pq.

2.8 Distribution analyses: density estimation

In many situations, the detailed shape of the underlying density function, say f ,
is of primary interest. In genetics for example, empirical distributions are frequently
evaluated. Brown (1969) studied the empirical distribution of the sample genetic correla-
tion coefficient using histograms. Through kernel densities, Schork (2002) estimated the
distribution of marker-allele frequencies. Segal e Wiemels (2002) used Gaussian kernel
estimation for studying Translocation, a physical movement of genetic material from one
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chromosome to another. In order to analyze empirical distributions of genetic distances
obtained from simulation, Worby et al. (2014) used Gaussian kernel densities. Through
histograms, Blows e Mcguigan (2014) analysed the empirical distribution of eigenvalues
of the G matrix obtained from simulated data.

Deng e Wickham (2011) state that density estimation builds an estimate of f using
an observed data sample, supposed to be independent and identically distributed. Density
estimation can either be parametric, where the data are obtained from a known probability
family, or nonparametric, which attempts to flexibly estimate an unknown distribution.

The histogram is, of course, a widely used tool for displaying the distribution shape
of a set of data, since it indicates the shape of f . However, viewed as a density estimate,
the histogram may be criticized in three ways (BOWMAN; AZZALINI, 1997):

1. Information has been thrown away in replacing the observations by the central
points of the interval in which it falls.

2. In most circumstances, f is assumed to be smooth, but its estimator is not, due to
the sharp edges of the boxes from which it is built.

3. The behaviour of the estimator is dependent on the choice of width of the intervals
(or equivalently boxes) used, and also, to some extent on the starting position of
the grid of intervals.

An approach that removes the first two of these problems is kernel density estima-
tion, at which a smooth function is used as the basic building block and also, these smooth
functions are centered directly over each observation.

Let x1, x2, ..., xn denote a sample of size n from a random variable X with density
f . The basic kernel estimator of f at the point x is given by:

f̂(x) = 1
n

n∑
i=1

k(x− xi|h), (26)

where k is a function that satisfies the conditions

∫
k(x)dx = 1,∫
xk(x)dx = 0,∫

x2k(x)dx = µ′2(k) > 0.

In this context, k is called kernel function, whose variance is controlled by the
parameter h. Hence, the kernel is itself a probability density. The most common kernel
functions are described in Table 2. And Figure 1 illustrates a Gaussian kernel function.

Because of its role in determining the manner in which the probability associated
with each observation spread over the surrounding sample space, h is called the smoothing
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Table 2 – Six common kernel functions

Kernel Formula Support interval µ′2(k)

Gaussian k(x) = 1√
2π exp (−x2/2) x ∈ < 1

Rectangular k(x) = 1
2 |x| < 1 1/3

Triangular k(x) = 1− |x| |x| < 1 1/6

Epanechnikov k(x) = 3
4
√

5

(
1− 1

5x
2
)

|x| <
√

5 1

Biweight k(x) = 15
16 (1− x2)2 |x| < 1 1/7

Cosine k(x) = 1 + cos(2πx) |x| < 1/2 ≈ 0.0326
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Figure 1 – Illustrating a Gaussian kernel function

parameter or bandwidth (BOWMAN; AZZALINI, 1997). Kernels can be scaled so that
bandwidth is the standard deviation of the kernel. The choice of h affects directly the
behaviour of the density estimate (BOWMAN; AZZALINI, 1997; SHEATHER, 2004).
The smaller is h the more winding is the density estimates. On the other hand, large
bandwidths produce very smooth estimates. In addition, most researchers agree that the
choice of kernel is not as important as the choice of h. Taylor (1989) presents a bootstrap
choice of h.

Some other methods of density estimation are: variable bandwidths, the nearest
neighbour methods, the ortogonal series methods, local likelihood and semiparametric den-
sity. Further details on density estimation can be found in Wand e Jones (1995), Simonoff
(1996), Bowman e Azzalini (1997).
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3 MATERIALS AND METHODS

3.1 Experimental data

3.1.1 Genetic material

The genetic material was obtained from the crossing of the maize lines L20-01F
and L02-03D, arising from populations developed by the maize breeding program of the
Genetics Department of ESALQ/USP. The L20-01F is derived from the IG-1 population,
which has orange hard grains, whereas L02-03D is derived from the IG-2 population,
which has yellow toothed grains. These populations have tropical origin, early cycle,
short stature and belong to different heterotic groups, contrasting on several agronomic
traits (MANGOLIN et al., 2004).

From the crossing of L20-01F and L02-03D was obtained the F1 generation, then
being selfed three plants of this generation, resulting in the F2 population. Approximately
500 F2 seeds were sown and the plants subsequently selfed to yield 256 F2:3 progenies
with well formed ears. For obtaining the number of seeds required for the evaluations,
the F2:3 progenies were grown in rows with 60 plants and crossed among plants were
performed on each progeny. Each plant was used only once as male or female.

3.1.2 Description of the experiments

Experiments were installed under a incomplete block design, more precisely square
lattice of dimension 16. Plots were 4.0 m long and spaced 0.8 m between rows, and 0.20
m between plants within rows; and they were overplanted and thinned to 20 plants per
plot (62,500 plants ha−1). The experiments were carried out at 12 environments, each
one corresponding to the combination local × year, namely:

1. Estação Experimental Departamento de Genética da ESALQ/USP (E. E. Depto.
Genética), years 2002/2003.

2. Estação Experimental Fazenda Caterpillar (E. E. Caterpillar), years 2002/2003.

3. Estação Experimental Fazenda Areão (E. E. Areão), years 2002/2003.

4. Estação Experimental Fazenda Anhembi (E. E. Anhembi), years 2002/2003.

5. Estação Experimental Departamento de Genética da ESALQ/USP (E. E. Depto.
Genética), years 2003/2004.

6. Estação Experimental Fazenda Caterpillar (E. E. Caterpillar), years 2003/2004.

7. Estação Experimental Fazenda Anhembi (E. E. Anhembi), years 2003/2004.

8. Estações Experimentais ESALQ/Anhembi, years 2004/2005.
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9. Estação Experimental Departamento de Genética da ESALQ/USP (E. E. Depto.
Genética), years 2005/2006.

10. Estação Experimental Fazenda Anhembi (E. E. Anhembi), years 2005/2006.

11. Estação Experimental Departamento de Genética da ESALQ/USP (E. E. Depto.
Genética), years 2006/2007.

12. Estação Experimental Fazenda Anhembi (E. E. Anhembi), years 2006/2007.

3.1.3 Response variables

The following variables were measured:

1. (STD) Stand, corresponding to the number of plants per plot;

2. (MO) Grains moisture content, in %, obtained from a sample of grains from each
plot, using an electronic determinator Dickey-John;

3. (NE) Number of ears per plot;

4. (W500) Weight of 500 grains, in g, measured after threshing on each plot;

5. (LE) Average length of ears, in cm;

6. (DE) Average diameter of ears, in cm;

7. (DC) Average diameter of cobs, in cm;

8. (NROWS) Average number of rows per ear;

9. (NGROW) Average number of grains per row;

10. (YP) Grains yield per plot, in g;

11. (PH) Average height of plants per plot, in m

12. (EH) Average height of ears, in cm;

13. (MF) Number of days from the sowing until 50% of plants in a plot to present
anthesis;

14. (FF) Number of days from sowing until 50% of plants to present visible style-stigma.

For statistical analysis, the variable YP was corrected to the standard moisture of
15.5% and converted to g plant−1 by dividing the corresponding value in g plot−1 by the
plot stand. Thus, STD and MO will be used only to correct YP. For the analysis of YP, all
plants in a plot were considered, while LE, DE, DC, NROWS and NGROW were obtained
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from a sample of five ears from each plot, being the sampling arithmetic mean used in
the analyses. Samples were taken from the five best formed ears of each plot. Hence,
there are actually twelve response variables, but in this study, only for simplicity, the
following variables were considered: DE, DC, PH, and NGROW. The analysis involving
all variables can be found in the Appendix.

3.1.4 Univariate analysis of variance

For each variable, analyses of variance (ANOVA) were performed per environment,
according to the following random linear model

yijk = µ+ αi + ξj + βk(j) + εijk (27)

where
yijk is the observation taken from the i-th progeny on the k-th block in the j-th replication;
µ is the population mean of the variable Y ;
αi is the random effect of the i-th progeny (i = 1, 2, ..., 256);
ξj is the random effect of the j-th replication (j = 1, 2);
βk(j) is the random effect of the k-th block (k = 1, 2, ..., 16) in the j-th replication;
εijk is the random error associated with yijk.

These analyses were used only to calculate adjusted (Least Square) means of proge-
nies for the effect of blocks, as presented by Cochran e Cox (1966).

3.1.5 Multivariate analysis of variance

Joint (for environments) analysis of variance was performed through multivariate
analysis of variance (MANOVA), using the adjusted means of progenies for the effect of
blocks, as a randomized block design model, expressed by

yij = µ+αi + λj + (αλ)ij (28)

where
yij is the p-dimensional vector of adjusted means of the i-th progeny on the j-th environ-
ment;
µ is the p-dimensional vector of population means of the response variables;
αi is the p-dimensional vector of random effects of the i-th progeny (i = 1, 2, ..., 256);
λj is the p-dimensional vector of random effects of the j-th environment (j = 1, 2, ..., 12);
(αλ)ij is the p-dimensional vector of random effects of the interaction between the i-th
progeny and the j-th environment.

By means of MANOVA the matrices of mean squares and cross-products of en-
vironment, ME, progenies, MG, and interaction progenies × environments, MGE were
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obtained. These two latter were used to calculate the statistic of interest

MG(ij)

MGE(ij)
, ∀i 6= j, i, j = 1, 2, ..., p. (29)

where p is the number of response variables, MG(ij) and MGE(ij) are the mean cross-
products of progenies and interaction progenies × environments, respectively, for the
variables located at the i-th row and j-th column.

It is stressed that the mean cross-products of interaction progenies × environments
were used as denominator for the test statistic, by analogy of the corresponding F -test,
the ratio of mean squares, since it is found that the expected value of mean squares and
cross-products are as shown in Table 3.

Table 3 – Scheme of MANOVA for joint analysis

Source D.f. M E(M)

Environments (E) e− 1 ME

Progenies (G) g − 1 MG ΣGE + eΣG

G × E (g − 1)(e− 1) MGE ΣGE

The estimation of the genetic covariance matrix, ΣG, was performed using the
method of moments. Then,

G = Σ̂G = MG −MGE

e
. (30)

Note that the estimation procedure used here is the standard one, i.e., based on the
assumption that the genetic variance (computed from the genotypic means) is constant
over environments. For more details about the estimation procedures, see Yamada (1962)
and Dutilleul e Carriere (1998).

3.2 Bootstrapping

The vectors yi,j of adjusted means were arranged in arrays, as shown in Table 4.
The bootstrap process consisted of resampling rows of Table 4, with replacement,

obtaining a new randomized array with the same dimensions (e× p× g). For illustrating
the scheme of bootstrap resampling, consider a hypothetical array of e = 4 environments
(rows), p = 2 variables (columns) and g = 3 progenies (matrices), as shown in Figure 2.

The third dimension of the array is being bootstrapped. In Figure 2 only three
bootstrap samples were generated. For the experimental data, a 12 × 4 × 256 array, the
number B of bootstrap samples was equal to 400.

After computing the bootstrapped arrays, the matrices M∗
G and M∗

GE (asterisc in-
dicates bootstrapped matrices) were determined via MANOVA, as described early. Then,
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Table 4 – Three dimensional array for bootstrap resampling

Progeny
Environment

1 2 · · · e

1 y1,1 y1,2 · · · y1,e

2 y2,1 y2,2 · · · y2,e
... ... ... ... ...

g yg,1 yg,2 · · · yg,e

, , 1

[,1] [,2]
[1,] y111 y121
[2,] y211 y221
[3,] y311 y321
[4,] y411 y421

, , 2

[,1] [,2]

, , 1

[,1] [,2]
[1,] y111 y121
[2,] y211 y221
[3,] y311 y321
[4,] y411 y421

, , 1

[,1] [,2]

, , 2

[,1] [,2]
[1,] y112 y122
[2,] y212 y222
[3,] y312 y322
[4,] y412 y422

, , 1

[,1] [,2]

, , 3

[,1] [,2]
[1,] y113 y123
[2,] y213 y223
[3,] y313 y323
[4,] y413 y423

, , 2

[,1] [,2]

Original...... Bootstrapped..................................

[,1] [,2]
[1,] y112 y122
[2,] y212 y222
[3,] y312 y322
[4,] y412 y422

, , 3

[,1] [,2]
[1,] y113 y123
[2,] y213 y223
[3,] y313 y323
[4,] y413 y423

[,1] [,2]
[1,] y111 y121
[2,] y211 y221
[3,] y311 y321
[4,] y411 y421

, , 3

[,1] [,2]
[1,] y113 y123
[2,] y213 y223
[3,] y313 y323
[4,] y413 y423

[,1] [,2]
[1,] y111 y121
[2,] y211 y221
[3,] y311 y321
[4,] y411 y421

, , 2

[,1] [,2]
[1,] y112 y122
[2,] y212 y222
[3,] y312 y322
[4,] y412 y422

[,1] [,2]
[1,] y112 y122
[2,] y212 y222
[3,] y312 y322
[4,] y412 y422

, , 1

[,1] [,2]
[1,] y111 y121
[2,] y211 y221
[3,] y311 y321
[4,] y411 y421

Figure 2 – Illustrating the scheme of bootstrap resampling on the third dimension of an
4× 2× 3 array

ratios of mean cross-products M∗
G(ij)/M∗

GE(ij), ∀i 6= j (i, j = 1, 2, ..., p.), were calculated,
obtaining 400 estimates of each test statistics of interest (eq. 29), whose empirical distri-
bution was built.

3.3 Simulating Wishart matrices

Under the assumptions of the MANOVA model, eq. 28, for the random effects it
was considered that
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αi ∼ Np(0,ΣG),

αλij ∼ Np(0,ΣGE).

where i = 1, 2, ..., 256 and j = 1, 2, ..., 12. Thus, matrices of mean squares and cross-
products, MG and MGE, obtained via MANOVA for the p-dimension vectors of ad-
justed means, as presented in Table 3, were considered to be positive definite having
a p-dimensional Wishart distribution, i.e.,

(g − 1)MG ∼ Wp(g − 1,ΣGE + aΣG),

(g − 1)(e− 1)MGE ∼ Wp((g − 1)(e− 1),ΣGE).
(31)

Now, taking into account the null hypothesis (H0):

H0 : ΣG = 0, (32)

then

(g − 1)M(H0)
G ∼ Wp(g − 1,ΣGE). (33)

Under these conditions, 10,000 Monte Carlo simulations of M(H0)
G and MGE were

performed. Considering (g − 1)M(k,H0)
G(ij) the k-th Monte Carlo result for MG(ij) under H0,

since E[Wp(n,Σ)] = nΣ (property 7, subsection 2.5.2), the following test statistic was
computed

(g − 1)M(k,H0)
G(ij)

(g − 1)(e− 1)M(k)
GE(ij)

× (g − 1)(e− 1)
g − 1 , ∀i 6= j, (34)

where i, j = 1, 2, ..., p.
Thus, k = 1, 2, ..., 10, 000 estimates of each test statistics of interest (eq. 29) were

obtained, whose empirical distribution was built.

3.4 Empirical distribution

The empirical distribution of the statistic defined in eq. 29 was evaluated by com-
puting the empirical cumulative distribution function and the kernel density.

The empirical cumulative distribution function (ECDF), denoted by F̂ , consists
of a step function with jumps a/n at observed values, where a is the number of tied
observations. Considering the vector of observations x = (x1, x2, ..., xn) from the random
variable X, F̂ (x) is the proportion of observations less than or equal to a given value x
(GOOD, 2006), i.e.,



43

F̂ (x) = 1
n

n∑
i=1

I(xi ≤ x), (35)

where I(·) is an indicator variable.
The kernel density was estimated according to the eq. 26, based on the Gaussian

kernel (Table 2).

3.5 p-value

Let Tij the random variable represented by the test statistic defined in eq. 29 for the
variables located at the i-th row and j-th column of the mean squares and cross-products
matrices. Now consider tij the value assumed by this variable for a certain data set.
Through the empirical distribution obtained via Bootstrap or Monte Carlo simulation,
the two-sided p-value was calculated as follows:

p = F̂ (−|tij|) + [1− F̂ (|tij|)], (36)

Then, the following hypotheses were evaluated:

H0 : σG(ij) = 0 vs. H1 : σG(ij) 6= 0 (37)

where σG(ij) is the genetic covariance between the i-th and j-th variables.
And, of course, ∀ i = j,

p = 1− F̂ (tij), (38)

which corresponds to the (simulated) p-value of the F -test for testing H0 : σG(ij) = 0.
Because the empirical distribution may not be symmetric around the origin, before

calculating two-sided p-values the median of the distribution was subtracted from the the
simulated and observed values tij. That is equivalent to compute right tail p-values from
the distribution of the absolute values.

3.6 Partial Wilks’ Lambda

Consider the estimate of the genetic covariance matrix ΣG, G (eq. 30), with dimen-
sion p× p.

G =



σ̂G(11) σ̂G(12) . . . σ̂G(1p)

σ̂G(21) σ̂G(22) . . . σ̂G(2p)

... ... . . . ...

σ̂G(p1) σ̂G(p2) . . . σ̂G(pp)
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Now consider a submatrix of dimension 2×2 from G, for any two variables, say i-th
and j-th (i, j = 1, 2, ..., p).

Gij =

σ̂G(ii) σ̂G(ij)

σ̂G(ij) σ̂G(jj)


The null hypothesis H0 : σG(ij) = 0 related to the genetic covariance of the i-th and

j-th variable can be evaluated by applying Wilks’ Lambda (eq. 23) approach for testing
independence of two sets of variables. In this case, p = q = 1 and because there are g− 1
independent observations, n = g − 1. Then, under H0

ΣG(ij) =

σG(ii) 0

0 σG(jj)

.
Thus, the likelihood ratio test statistic is given by

Λ =
σ̂G(ii)σ̂G(jj) − σ̂2

G(ij)

σ̂G(ii)σ̂G(jj)
(39)

which is distributed as Λ(1, 1, g − 3), being g the number of progenies. There is only one
constraint in the specification of H0, σG(ij) = 0, so if the null hypothesis is true, then the
approximation to a chi-square distribution is given by

−(g − 1) loge Λ d→ χ2
1 (40)

Note that, since it is considered only part of the original matrix G, this procedure
is called here as Partial or Pairwise Wilks’ Lambda. The equivalent Pillai test statistic
(as defined in eq. 25) is:

Tn =
σ̂2
G(ij)

σ̂G(ii)σ̂G(jj)
(41)

whose chi-square approximation is also given by (g − 1)Tn d→ χ2
1.

It is noteworthy that Λ = 1− ρ̂2
G(ij) and Tn = ρ̂2

G(ij). Then, because these procedures
proposed here are invariant to scaling, both allow one to test either the genetic covariance
or correlation. Hence, comparisons with the exact p-values were done in order to evaluate
the consistency of the inferences made with the approximate tests. The exact p-value
was calculated from the exact correlation probability density function (PDF) under the
null hypothesis H0 : ρG(ij) = 0, ∀i 6= j. According to Weisstein (2015), the PDF for the
correlation coefficient (r) of two Gaussian variables is given by:

f(r|ν) = (1− r2) ν−2
2

B
(

1
2 ,

ν
2

) I[−1,1](r) (42)
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where ν is the degrees of freedom (of progenies in this case) and B(.,.) is the beta function:

B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx (43)

Thus, since f(r|ν) is symmetric around zero, the exact two-sided p-value related to
a certain genetic correlation, say rG(ij), is calculated by

p = 2
∫ 1

|rG(ij)|
f(r|ν)dr (44)

3.7 Evaluating the sample size effect

For evaluating the sample size effect on the empirical distributions, part of the
original data (the first 5 progenies and last 4 environments) was selected. Afterwards,
the same methods described earlier were applied and the distributions were once again
studied.

3.8 Evaluating collinearity effects

Because the empirical test based on bootstrap resampling and Wishart simulation
are built element-wise, there is no reason to be concerned about collinearity effects on the
matrices MG and MGE. However, for evaluating Wilks’ Lambda statistic, the determinant
of the matrix G is computed. Hence, a multicollinearity diagnosis has to be done. It was
based on the condition number (CN), that consists of the ratio between the largest and
smallest eigenvalue of the underlying matrix. According to Montgomery e Peck (1982),
the following classification can be applied:

• CN < 100: weak multicollinearity

• 100 ≤ CN ≤ 1,000: moderate to severe multicollinearity

• CN > 1,000: severe multicollinearity

Since the calculation of Pillai’s test statistic, as defined in eq. 41, is not affected by
collinearity effects, it may constitutes an alternative for overcoming collinearity problems.

3.9 Computing

All the analyses were performed using the software R version 3.1.2 (R CORE TEAM,
2014), as described in Table 5.

Those procedures not mentioned here were implemented in R language. Three
functions were developed to perform the empirical test based on the approaches of Wilks’
Lambda, Bootstrap and Wishart simulation. All of them were designed to receive as input
an object of class ‘manova’, which contains the model matrix, the degrees of freedom and
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Table 5 – Statistical procedures in R

Procedure Function Package Reference

ANOVA aov() stats R Core Team (2014)

LS means popMeans() doBy Hojsgaard et al. (2012)

MANOVA manova() stats R Core Team (2014)

Multivariate mvShapiro.Test() mvShapiroTest Gonzalez-Estrada (2013)

normality test

Simulation of Wishart rWishart() stats R Core Team (2014)

matrices

ECDF ecdf() stats R Core Team (2014)

Kernel density density() stats R Core Team (2014)

the matrices of sum of squares and cross-products of each source. All the codes used to
execute the empirical tests and related functions are available in the appendices of this
thesis.
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4 RESULTS AND DISCUSSION

4.1 On the exact distribution of the mean cross-products ratio

Consider a g× 2 matrix α = [αX αY ]T containing g genetic effects of the variables
X and Y , as defined in eq. 28. Also, consider a ge × 2 matrix ε = [εX εY ]T containing
the random error term of the MANOVA model. Assumingα

ε

 ∼ N2


0

0

 ,
ΣG 0

0 Σ


,

the matrix of mean squares and cross-products MG (as shown in Table 3) can be obtained
by

MG = e

g − 1(α̂T α̂). (45)

And the residual matrix could be obtained by

MGE = 1
(g − 1)(e− 1)(ε̂T ε̂). (46)

Thus, the ratio of the off-diagonal elements from MG and MGE corresponds to the
statistic of interest for measuring the significance of the genetic covariance component of
MG, say σG(XY ). But what distribution does this ratio have? Note that the ratios involv-
ing diagonal elements correspond to F variables. An answer to the question should be ob-
tained from first studying the distribution of the cross-products term resulting from αTα.
For the simplest case take g = 1, then if α1X ∼ N(0, σG(XX)) and α1Y ∼ N(0, σG(Y Y )) are
independent (under H0 : σG(XY ) = 0), the distribution of α1X×α1Y can be given in terms
of Meijer G-function (SPRINGER; THOMPSON, 1970). The authors prove the following
theorem

Theorem 4.1. The probability density function of the product z = ∏n
i=1 xi of n indepen-

dent Gaussian random variables N(0, σi), i = 1, 2, ..., n, is a Meijer G-function multiplied
by a normalizing constant H, i.e.,

g(z) = HGN0
N0

(
z2

n∏
i=1

1
2σi
|0
)
, (47)

where

H =
[
(2π)n/2

n∏
i=1

σi

]−1

. (48)

Ware e Frank (2003) present the following procedure to compute the pdf of a product
of two independent Gaussian variables: Take X ∼ N(µx, σxx) and Y ∼ N(µy, σyy), inde-
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pendent variables and Z = XY . Now, define the conditional distribution of Z|(Y = y),
which is Z|y ∼ N(yµx, y2σxx). Then, find the joint distribution of Z and Y :

fZY (z, y) = fZ|Y (z|y)fY (y) (49)

Finally, the marginal density fZ(z) is obtained by integrating fZ|Y (z|y)fY (y) with
respect to y, i.e.,

fZ(z) =
∫ ∞
−∞

fZ|Y (z|y)fY (y)dy, (50)

which can be solved using a numerical procedure.
The moment generating function of Z = XY was derived by Craig (1936):

MXY (t) = E(etxy)

=
∫ ∞
−∞

∫ ∞
−∞

etxyfX(x)fY (y)dxdy

= 1
2π

∫ ∞
−∞

∫ ∞
−∞

exp
(
−1

2

[
(x− µx)2

σxx
+ (y − µy)2

σyy

]
+ txy

)
dxdy

=
exp([(σxxµ2

y + σyyµ
2
x)t2 + 2tµxµy]/2(1− t2σxxσyy))

(1− t2σxxσyy)1/2

(51)

Then, the mean and variance are

E(XY ) = M ′
XY (0)

= µxµy

V ar(XY ) = M ′′
XY (0)− [M ′

XY (0)]2

= µ2
yσxx + µ2

xσyy + σxxσyy

(52)

Here it is presented a result based on 100,000 simulations of two independent Gaus-
sian variables, X ∼ N(0, 4) and Y ∼ N(0, 1). The kernel density obtained is shown in
Figure 3.

Note that the product xy is not N(0, 4). Indeed, the empirical distribution does
not seem to be normally distributed. According to Aroian (1947), only under certain
conditions the probability density function of xy approximates to a normal curve. Specif-
ically when the inverses of the coefficients of variation are large, i.e., when µx >> σx and
µy >> σy. This can be seen in Figure 4, where 100,000 random values are simulated from
X ∼ N(20, 4) and Y ∼ N(10, 1) in order to compute the empirical distribution of the
product XY .



49

−10 −5 0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

xy

D
en

si
ty

| | | | | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| | | | | |

Kernel density
N(0, 4)

Figure 3 – Distribution of the product of two independent Gaussian variables, X ∼ N(0, 4)
and Y ∼ N(0, 1)
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Figure 4 – Distribution of the product of two independent Gaussian variables, X ∼
N(20, 4) and Y ∼ N(10, 1)

According to Aroian (1947) and Aroian et al. (1978), when rXY → 0, the Pearson’s
Type III function and the Gram-Charlier Type A series are excellent approximations to
the probability density function (PDF) of xy. Regardless, although the product of two
Gaussian variables does not produce a Gaussian variables, Bromiley (2003) states that
the product of two Gaussian PDFs is proportional to a Gaussian PDF.

Hereupon, because the genetic effects α usually have mean zero, it seems to be tricky
getting a large value for the inverse of its coefficient of variation. Hence, studying the
distribution of a mean cross-products ratio as a quotient of two Gaussian variables may
not be suitable.
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In the following sections, it is presented three alternatives for evaluating the null
hypothesis H0 : σG(XY ) = 0. The first is based on the χ2 approximation from Wilks’ Λ
statistic for testing independence of two random vectors normally distributed. The second
is the bootstrap approach. Finally, the third procedure is simulation-based.

4.2 Analysis of variance and components of covariance

4.2.1 Analysing part of the data

A significant (p < 0.0001) effect of progenies on the multivariate response was
obtained from the F approximation for the Wilks’ Lambda criterion (Table 6). Thus, at
least one non-null (co)-variance component is expected.

Table 6 – Multivariate analysis of variance of the maize variables: NGROW, DE, DC,
PH. Results obtained with part of the data

Source D.f. Wilks Approx. F Num. D.f. Den. D.f. p-value

Environments (E) 3 0.0604 3.79 12 24.10 0.0026

Progenies (G) 4 0.0063 7.45 16 28.13 < 0.0001

Residuals (G × E) 12

The Shapiro-Wilk normality test was applied over the residual matrix. The p-value
was 0.374, which indicates that multivariate normality is a reasonable assumption.

The matrices of mean squares and cross-products, M, obtained via MANOVA are:

MG =



22.6317 2.2336 0.7046 0.2125

2.2336 0.4220 0.1455 0.0348

0.7046 0.1455 0.0531 −0.0026

0.2125 0.0348 −0.0026 0.0857


,

MGE = Σ̂GE =



4.5895 0.1745 0.1103 0.0644

0.1745 0.0195 0.0129 0.0042

0.1103 0.0129 0.0110 0.0037

0.0644 0.0042 0.0037 0.0101


Then, the matrix G, containing the (co)-variance components is
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G = Σ̂G =



4.5105 0.76 0.68 0.12

0.5148 0.1006 1.01 0.17

0.1486 0.0332 0.0105 −0.11

0.0370 0.0077 −0.0016 0.0189


,

where the upper triangular elements correspond to the genetic correlations.
Note, for example, that σ̂G(1,2) = 0.5148. Is this value significant (p ≤ 0.05)? Or,

more precisely, is this value significant in comparison to σ̂GE(1,2) = 0.1745?
All the genetic correlation estimates involving PH are less than 0.2 in absolute

value. Two estimates of correlation involving NGROW are around 0.7. Studying exotic
maize hybrids, Munawar et al. (2013) also found a genetic correlation around 0.2 between
NGROW and PH. For NGROW and cob girth, these authors found rG = 0.67, which is in
agreement with our findings (rG = 0.68 for NGROW and DC). Tengan et al. (2012) found
low phenotypic correlations between DC and PH (around 0.00 and 0.47) in a backcross
breeding program involving normal and opaque-2 maize.

There is one estimate of genetic correlation that is even greater than 1.0. And that
is probably because the condition number of G was 3549.61, indicating severe collinearity,
which is probably a consequence of estimating with the method of moments. According
to Hill e Thompson (1978), if G is non-positive definite, heritabilities and ordinary or
partial genetic correlations can fall outside their valid limits. A comprehensive study of
the sampling distribution of genetic correlation estimated from the MANOVA was carried
out by Liu et al. (1997).

4.2.2 Analysing all the data

When considering all the 12 environments and 256 progenies, the following result
(Table 7) was found with MANOVA.

Table 7 – Multivariate analysis of variance of the maize variables: NGROW, DE, DC, PH

Source D.f. Wilks Approx. F Num. D.f. Den. D.f. p-value

Environments (E) 11 0.0538 279.28 44 10722 < 0.0001

Progenies (G) 255 0.0362 14.19 1020 11210 < 0.0001

Residuals (G × E) 2805

This time, residuals did not present multivariate normality (p < 0.0001).
The matrices of mean squares and cross-products, M, obtained via MANOVA are:
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MG =



75.1352 3.2533 0.8702 0.9218

3.2533 0.5042 0.2591 0.0653

0.8702 0.2591 0.1978 0.0296

0.9218 0.0653 0.0296 0.1028


,

MGE = Σ̂GE =



6.3571 0.2358 0.0849 0.0674

0.2358 0.0270 0.0110 0.0043

0.0849 0.0110 0.0093 0.0018

0.0674 0.0043 0.0018 0.0074


Then, the matrix G, containing the (co)-variance components is

G = Σ̂G =



5.7315 0.53 0.22 0.33

0.2515 0.0398 0.83 0.29

0.0654 0.0207 0.0157 0.21

0.0712 0.0051 0.0023 0.0080


,

where the upper triangular elements correspond to the genetic correlations.

Observe now that the estimate σ̂G(1,2) = 0.2515 is closer to σ̂GE(1,2) = 0.2358. The
correlations involving PH remained low. And, although there is no correlation greater
than one, G also presented severe multicollinearity (NC = 2086.45).

4.3 Wilks’ and Pillai’s statistics

Before presenting the results obtained using the Wilks’ (eq. 39) and Pillai (eq. 41)
criteria, it was verified their approximations to a χ2

1 distribution. In Figure 5 it is shown
the kernel densities of the quantities −(g−1) loge Λ (eq. 40) and (g−1)Tn after simulating
10,000 genetic covariance matrices under the null hypothesis H0 : σG(ij) = 0, ∀i 6= j,
i, j = 1, 2, 3, 4, i.e.,
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G(H0) ∼ W4


4,



4.5105 0 0 0

0 0.1006 0 0

0 0 0.0105 0

0 0 0 0.0189
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Figure 5 – Density of the pairwise Wilks’ Lambda and Pillai’s approximations to a χ2
1

distribution. Results obtained with part of the data set

As we can note, the approximations for Wilks’ Lambda and Pillai’s Tn can be
considered reliable if one intends to use them for calculating p-values, since right tails are
quite similar to the corresponding χ2

1. Therefore, some tests presented here were based
only on Pillai’s statistic, due to collinearity problems.

The output of the R function designed to perform the test of H0 : σG(ij) = 0, ∀i 6=
j, based on Wilks’and Pillai’s approximation is given in Figure 6. It consists of three
matrices. The first one is G, where the upper triangular elements correspond to genetic
correlations. The second and third matrices give values of the χ2

1 approximation for
Wilks’ Lambda and Pillai’s Tn, respectively, on lower triangular part, whereas the upper
triangular contains the associated p-values. For example, take the variables NGROW (1)
and DE (2). We know σ̂G(12) = 0.5148 and ρ̂G(12) = 0.7641. The second matrix shows
that −4 log(Λ) = 3.5070, whose p-value is 0.0611. On the other hand, the third matrix
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shows that the p-value associated with 4Tn = 2.3355 is 0.1265. Then, we have got some
evidence against H0 : σG(12) = 0.

Genetic Covariance Test 

Genetic (Co)variances and Correlations (upper triangular):
NGROW     DE      DC      PH

NGROW 4.5105 0.7641  0.6817  0.1268
DE    0.5148 0.1006  1.0186  0.1755
DC    0.1486 0.0332  0.0105 -0.1109
PH    0.0370 0.0077 -0.0016  0.0189

Chi-Sq (df = 1) approx. (Wilks) and p-values (upper triangular):
NGROW     DE     DC     PH

NGROW     NA 0.0611 0.1139 0.7989
DE    3.5070     NA    NaN 0.7235
DC    2.4997    NaN NA 0.8240
PH    0.0649 0.1251 0.0495     NA

Chi-Sq (df = 1) approx. (Pillai) and p-values (upper triangular):
NGROW     DE     DC     PH

NGROW     NA 0.1265 0.1728 0.7997
DE    2.3355     NA 0.0416 0.7256
DC    1.8588 4.1500     NA 0.8245
PH    0.0644 0.1232 0.0492     NA

Figure 6 – Output of the R function designed to test genetic covariance through Wilks’
and Pillai’s statistics. Results obtained with part of the data set

It is noteworthy that Wilks’ approximation seems to be more sensitive than Pillai’s.
Observe that the difference between p-values is larger as the estimate of genetic covari-
ance increases (in absolute value). See, for example, that for σG(12) this difference is of
around 0.06. Almost the same for σG(13). On the other hand, for low values of genetic
covariance, such as σ̂G(14), σ̂G(24) and σ̂G(34), the differences are irrelevant. Nonetheless,
due to collinearity problems between DE and DC, Wilks’ statistic cannot be evaluated.

Using all the data, i.e., the 12 environments and 256 progenies, the χ2
1 approxima-

tions were even better (Figure 7), as expected.
The output shown in Figure 8 was obtained. Now, even though some estimates are

lower than before, the sensitivity of both tests (Wilks and Pillai) increased roughly, as
expected. And as a consequence, all p-values are lower than 0.01.

Figure 9 shows the genetic correlations and their exact two-sided p-values, i.e.,
calculated from the exact PDF of the correlation coefficient under the null hypothesis
(H0 : ρG(ij) = 0, for i, j = 1, 2, 3, 4), for both partial and complete data set. We observe
that p-values related to correlations greater than 0.6 (absolute value) are intermediate in
comparison to those obtained with Wilks’ (lowest p-values) and Pillai’s approaches. On
the other hand, when there is weak evidence against H0 (NGROW vs PH, DE vs PH and
DC vs PH) the exact p-values tend to be a little higher. Nevertheless, we can observe
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Figure 7 – Density of the pairwise Wilks’ Lambda and Pillai’s approximations to a χ2
1

distribution

Genetic Covariance Test 

Genetic (Co)variances and Correlations (upper triangular):
NGROW     DE     DC     PH

NGROW 5.7315 0.5267 0.2181 0.3335
DE    0.2515 0.0398 0.8272 0.2860
DC    0.0654 0.0207 0.0157 0.2074
PH    0.0712 0.0051 0.0023 0.0080

Chi-Sq (df = 1) approx. (Wilks) and p-values (upper triangular):
NGROW       DE      DC    PHNGROW       DE      DC    PH

NGROW      NA   0.0000  0.0004 0e+00
DE    82.8611       NA  0.0000 0e+00
DC    12.4296 294.0248      NA 8e-04
PH    30.0702  21.7665 11.2152    NA

Chi-Sq (df = 1) approx. (Pillai) and p-values (upper triangular):
NGROW       DE      DC    PH

NGROW      NA   0.0000  0.0005 0e+00
DE    70.7455       NA  0.0000 0e+00
DC    12.1315 174.5026      NA 9e-04
PH    28.3649  20.8634 10.9722    NA

Figure 8 – Output of the R function designed to test genetic covariance through Wilks’
and Pillai’s statistics
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similarities among all respective p-values.

# Incomplete data (5 progenies, 4 environments)

Exact Correlation Test 

Genetic Correlations and p-values (upper triangular):
NGROW     DE      DC     PH

NGROW 1.0000 0.0769  0.1359 0.8107
DE    0.7641 1.0000  0.0005 0.7395
DC    0.6817 1.0186  1.0000 0.8344
PH    0.1268 0.1755 -0.1109 1.0000

Alternative hypothesis: two.sided

# ------------------------------------------------------------
# Complete data (256 progenies, 12 environments)

Exact Correlation Test 

Genetic Correlations and p-values (upper triangular):
NGROW     DE     DC    PH

NGROW 1.0000 0.0000 0.0004 0e+00
DE    0.5267 1.0000 0.0000 0e+00
DC    0.2181 0.8272 1.0000 8e-04
PH    0.3335 0.2860 0.2074 1e+00

Alternative hypothesis: two.sided

Figure 9 – Output of the R function designed to perform an exact test of the genetic
covariance

In general and considering the sample size effect, the p-values for both approxima-
tions are in agreement (Figure 10) and consistent with respect to the genetic covariance
(and correlation) estimates.
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Figure 10 – Shepard’s diagrams for evaluating agreement among the exact p-values and
those obtained using Wilks’ and Pillai’s approximations
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4.4 Bootstrap approach

Bootstrapping part of the data 400 times, randomized matrices MG and MGE were
obtained. The empirical distributions of mean squares and cross-products ratios are shown
in Figure 11. Because the bootstrap process can generate very large values of the ratio,
data were winsorized in 0.5% on each tail. The first graphical line is related to mean
squares ratio for the variables NGROW, DE and DC. Rods indicate the observed ratio.
The density of a F distribution with 4 and 12 degrees of freedom was superimposed on
the kernel densities for comparisons. Although the behaviors of the kernel densities are
generally similar to the F PDF, there are some differences. Nevertheless, the locations of
the empirical distributions seem to be correct. Also, the associated p-values should lead
to the same conclusion about H0 : σG(ij) = 0, ∀i = j.

Empirical distributions of mean cross-products ratios tended to be symmetric around
some point between 0 and 1, as expected, which is not the same for every pair of variables.
Approximations to a non-standard Cauchy(µ0, γ) distribution were checked, where µ0

is the location parameter, mode and median, and γ is the scale parameter, half the
interquartile range. Both, symmetry and approximation to Cauchy distribution were
characteristics related to the observed statistics. They are more evident in cases whose
null hypotheses are more likely. See for example DC vs PH, whose distribution shows
best symmetry and approximation. The genetic correlation is the lowest (-0.11). On the
other hand, the extreme value of genetic correlation between DE and DC promotes no
symmetry and Cauchy approximation. Thus, this problem is due to two probable causes:
1) the randomization process, i.e., the bootstrap resampling may not be efficient enough
on generating matrices under H0, and/or 2) the structure of the matrices M. According
to the estimates of genetic correlation, cause 2 seems more likely, since the matrix G
presents collinearity problems.

The output of the function designed to test H0 : σG(ij) = 0 via mean squares and
cross-products ratio is shown in Figure 12. It consists of two matrices: the first contains
genetic (co)variances (lower triangular) and correlations (upper triangular) and the sec-
ond contains the mean squares and cross-products ratios (lower triangular) and associated
empirical p-values (upper triangular, only for cross-products). Note that, because genetic
covariances are effected by variable scaling, a good guide for evaluating their magnitude is
the respective correlations. Then, pairs of variables presenting genetic correlation around
0.7 or above (NGROW vs DE, NGROW vs DC, DE vs DC) presented p < 0.01, indicating
that the corresponding genetic covariance are significant. On the other hand, mean cross-
products ratio of NGROW vs PH (0.12), DE vs PH (0.17) DC vs PH (-0.11) presented
p > 0.05, indicating that respective genetic covariances can be considered null. These
conclusions are accordant to those made up by using Wilks’s and Pillai’s approaches.
However, the p-values are quite different in some cases. For example, take the correlation
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Figure 11 – Density of the bootstrapped mean squares and cross-products ratios. Results
obtained with part of the data

between NGROW and PH (0.12) and between DC and PH (-0.11). Considering their
absolute values, they are very similar. Based on Wilks’ Lambda, p-values are 0.7989 and
0.8240, respectively. But here p = 0.1675 and p = 0.5900, respectively. Why? The answer
lies on the test statistics. Here, the ratio of mean cross-products is used to measure the
magnitude of the genetic covariance, i.e., the residual covariance is taken into account.
Observe that the ratio related to NGROW vs PH (3.3012) is much higher than that re-
lated to DC vs PH (-0.7012), again in absolute value. It means that the genetic covariance
of NGROW and PH makes a greater contribution to the corresponding phenotypic co-
variance than does the genetic covariance of DC and PH. Since cross-products ratios are
dimensionless, comparing values is a valid task. Nonetheless, Wilks’ Lambda disregards
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the information of residual covariance for testing genetic covariance.

Genetic Covariance Test via Bootstrap 

Genetic (Co)variances and Correlations (upper triangular):
NGROW     DE      DC      PH

NGROW 4.5105 0.7641  0.6817  0.1268
DE    0.5148 0.1006  1.0186  0.1755
DC    0.1486 0.0332  0.0105 -0.1109
PH    0.0370 0.0077 -0.0016  0.0189

Mean Sq and Cross-Prods Ratios and p-values (upper triangular) 
based on 400 estimates:

NGROW      DE      DC     PH
NGROW  4.9312  0.0000  0.0075 0.1675
DE    12.8014 21.6422  0.0000 0.0875
DC     6.3903 11.2840  4.8367 0.5900
PH     3.3012  8.2161 -0.7012 8.4603

Alternative hypothesis: two.sided

Figure 12 – Output of the R function designed to test genetic covariance via cross-products
ratio based on bootstrap resampling. Results obtained with part of the data

One could also verify that the ratio for DE vs PH is 8.2161 and for NGROW vs DC
is 6.3903. In contrast, the associated p-values are 0.0875 and 0.0075, respectively. But
note that the genetic correlations are 0.1755 and 0.6817, respectively. Hence, the test
based on mean cross-products ratio is probably related to both the value of the genetic
covariance and the magnitude of the latter with respect to the residual covariance.

Using the complete data, the approximation to a F (255, 2805) distribution for mean
squares ratio was not verified (Figure 13). The empirical distributions were shifted in
some way. Kernel densities of mean cross-products kept their general shape, but some of
them, such as that for NGROW vs PH and De vs PH, did not remain inside the expected
interval [-1, 1]. Approximations to a normal distribution are verified.

Inferences were significantly affected by the sample size, as expected. As occurred
for Wilks’ Lambda, all p-values were less than 0.001 (Figure 14).

4.5 Simulation approach

Simulating 10,000 Wishart matrices M(H0)
G and MGE the empirical distribution of

mean squares and cross-products ratios were obtained (Figure 15). Data were also win-
sorized in 0.5% on each tail. Again, approximations to a F (4, 12) and Cauchy(µ0, γ)
distributions were checked. The empirical ratio of mean squares is undoubtedly a F vari-
able. The approximations are much more evident than those obtained by bootstrapping
data (Figure 11). Kernel densities of mean cross-products showed the same general behav-
ior as those found with the bootstrap approach. But now, location and scale parameters
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Figure 13 – Density of the bootstrapped mean squares and cross-products ratios

are greater. In fact, it was expected that the actual distribution (under H0) locations are
1 or -1. Thus, Monte Carlo simulation showed more effectiveness. Again, the condition-
ing of G matrix seems to roughly affect the empirical distribution of mean cross-products
ratios. See for example that the distribution related to DE vs DC (rG ≈ 1.02) is com-
pletely skewed. Once more, symmetry and approximations to a Cauchy distribution were
dependent on the magnitude of genetic covariance estimate.

The output of the function designed to perform the genetic covariance test via
Monte Carlo simulation of Wishart matrices is shown in Figure 16. Actually, it contains
the same components as those in Figure 12, based on bootstrap. In fact, all p-values are
quite similar to the latter, but slightly higher, except from that related to NGROW vs
DC (p = 0.0652), which could allow one to conclude in favor of H0.
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Genetic Covariance Test via Bootstrap 

Genetic (Co)variances and Correlations (upper triangular):
NGROW     DE     DC     PH

NGROW 5.7315 0.5267 0.2181 0.3335
DE    0.2515 0.0398 0.8272 0.2860
DC    0.0654 0.0207 0.0157 0.2074
PH    0.0712 0.0051 0.0023 0.0080

Mean Sq and Cross-Prods Ratios and p-values (upper triangular) 
based on 400 estimates:

NGROW      DE      DC      PH
NGROW 11.8192  0.0000  0.0000  0.0000
DE    13.7983 18.6856  0.0000  0.0000
DC    10.2558 23.5940 21.2446  0.0000
PH    13.6740 15.2891 16.7606 13.8862

Alternative hypothesis: two.sided

Figure 14 – Output of the R function designed to test genetic covariance via cross-products
ratio based on bootstrap resampling

Using all the data set, empirical distributions of mean squares ratio are still well
approximated by the F PDF and also by a Normal PDF (Figure 17), as expected since
the following result8 is observed:

F (ν1, ν2)→ν1X
ν2→∞ χ2

ν1 = Gamma(ν1/2, 2) ν1/2→∞→ Normal(ν1, 2ν1) (53)

Unlike bootstrap (Figure 13), the simulation approach has provided a correct lo-
cation of all the empirical distributions. Probably, simulations were less affected by the
quality of the matrices M than the bootstrap.

Normal PDFs also provide a reasonable approximation to the distributions of mean
cross-products ratio. The location parameter now achieved the unit for all pairs of vari-
ables, as well as symmetry around this value. These expected results were verified only
in some cases with the bootstrap approach (Figure 13).

Likewise in the other approaches, all the p-values indicate strong (p < 0.0001)
evidence against H0 (Figure 18).

4.6 Further discussion

A problem found in the Wilks’ and Pillai’s approaches is the necessity of estimat-
ing ΣG. According to Cheverud (1988), Revell et al. (2010) and Proa et al. (2012), a
phenotypic covariance matrix, estimated with large samples might approach ΣG more ac-
curately than genetic covariances estimated from small effective sample sizes, at least for
morphometric data. Meyer e Kirkpatrick (2010) stated that in quantitative genetic anal-

8For more details see Casella e Berger (2002), p. 627.
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Figure 15 – Density of the simulated mean squares and cross-products ratios. Results
obtained with part of the data

yses, we attempt to partition observed, overall (phenotypic) covariances into their genetic
and environmental components. Typically, this results in strong sampling correlations
between them. Hence, while the partitioning into sources of variation and estimates of in-
dividual covariance matrices may be subject to substantial sampling variances, their sum,
i.e., the phenotypic covariance matrix, can generally be estimated much more accurately.

In Table 8 it is presented the estimates of genetic covariance, correlation and the
p-values calculated through all the approaches described, for two sample sizes. Based on
the p-values, two types of test can be identified: 1) those that do not take into account
the residual covariance on its test statistic - Wilks, Pillai and ‘Exact’, and 2) those that
do - tests via mean cross-products ratio based on bootstrap and Monte Carlo simulation.
Using part of the data, i.e., 5 progenies and 4 environments, p-values of the first group
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Genetic Covariance Test via Wishart Simulation 

Genetic (Co)variances and Correlations (upper triangular):
NGROW     DE      DC      PH

NGROW 4.5105 0.7641  0.6817  0.1268
DE    0.5148 0.1006  1.0186  0.1755
DC    0.1486 0.0332  0.0105 -0.1109
PH    0.0370 0.0077 -0.0016  0.0189

Mean Sq and Cross-Prods Ratios and p-values (upper triangular) 
based on 9999 estimates:

NGROW      DE      DC     PH
NGROW  4.9312  0.0166  0.0652 0.2248
DE    12.8014 21.6422  0.0015 0.0997
DC     6.3903 11.2840  4.8367 0.6025
PH     3.3012  8.2161 -0.7012 8.4603

Alternative hypothesis: two.sided

Figure 16 – Output of the R function designed to test genetic covariance via cross-products
ratio based on Monte Carlo Simulation of Wishart matrices. Results obtained with part
of the data

tend to be larger than those of the second group. Nevertheless, all tests are related and
all of them were similarly affected by the sample size.

Figure 19 shows the p-values correlation matrix for the tests presented. Information
of DE vs DC were excluded, due to missing value of the Wilks’ test. All tests were highly
correlated, specially inside their group, despite differences among magnitudes of p-values.

4.7 Extra examples

Three illustrative data sets were used in this section in order to evaluate the per-
formance of the approaches under different conditions. Data sets were extracted from
experiments involving different crops. All of them were carried out under a randomized
block design.

1. Maize: 10 genotypes of maize evaluated at 3 blocks on the response variables: plant
height (PH), grains yield (YI) and percentage of plant falling (FA).

2. Garlic: 89 accessions of garlic evaluated at 4 blocks on the response variables: bulb
diameter (BD), bulb length (BL) and bulb yield (YI).

3. Pepper: 9 accessions of chili pepper evaluated at 2 blocks on the response variables:
fruit length (FL), peduncle length (PL) and fruit weight (FW).

The G matrices presented the following condition numbers: 21.8, 266.3 and 449.9,
respectively. Table 9 contains the estimates of genetic covariance, correlation and respec-
tive p-values according to the tests built through Wilks, Pillai, null correlation PDF and



64

0.6 0.8 1.0 1.2 1.4

0
1
2
3
4
5
6
7

NGROW

Mean squares ratio

D
en

si
ty

| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| | |

Kernel
F(255, 2805)
N(1, 0.01)

0.6 0.8 1.0 1.2 1.4

0
1
2
3
4
5
6
7

DE

Mean squares ratio
D

en
si

ty

| | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| | |

Kernel
F(255, 2805)
N(1, 0.01)

0.6 0.8 1.0 1.2 1.4

0
1
2
3
4
5
6
7

DC

Mean squares ratio

D
en

si
ty

| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| | |

Kernel
F(255, 2805)
N(1, 0.01)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

NGROW vs. DE

Mean cross−products ratio

D
en

si
ty

| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |

Kernel
Cauchy(1, 0.09)
N(1, 0.02)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

NGROW vs. DC

Mean cross−products ratio

D
en

si
ty

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||

Kernel
Cauchy(1, 0.13)
N(1.01, 0.04)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

NGROW vs. PH

Mean cross−products ratio
D

en
si

ty

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kernel
Cauchy(1, 0.15)
N(1, 0.05)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

DE vs. DC

Mean cross−products ratio

D
en

si
ty

| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |

Kernel
Cauchy(1, 0.08)
N(1, 0.01)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

DE vs. PH

Mean cross−products ratio

D
en

si
ty

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kernel
Cauchy(1, 0.15)
N(1, 0.05)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

DC vs. PH

Mean cross−products ratio

D
en

si
ty

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kernel
Cauchy(1, 0.21)
N(1.01, 0.08)

Figure 17 – Density of the simulated mean squares and cross-products ratios

mean cross-products ratio via bootstrap resampling and simulations of Wishart matrices.
For all data sets, p-values obtained using Wilks and null correlation PDF are quite close
to each other. Pillai’s p-values are as closer to the latter two as there is less evidence
against H0. Moreover, there is agreement among these tests for all data sets.

Once more, the magnitude of the genetic covariance with respect to its relative
residual covariance has been taken into account by the tests based on mean cross-products
ratio. For the Maize data set, all tests appear to lead to the same conclusion. However,
the test based on Wishart simulation does not. See that for PH vs YI the test based on
bootstrap was more sensitive. For the Garlic data, there was total agreement among the
tests, as expected since all genetic correlations are greater than 0.95. In addition, they may
have been affected by the large sample size. For the Pepper data, the simulation approach
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Genetic Covariance Test via Wishart Simulation 

Genetic (Co)variances and Correlations (upper triangular):
NGROW     DE     DC     PH

NGROW 5.7315 0.5267 0.2181 0.3335
DE    0.2515 0.0398 0.8272 0.2860
DC    0.0654 0.0207 0.0157 0.2074
PH    0.0712 0.0051 0.0023 0.0080

Mean Sq and Cross-Prods Ratios and p-values (upper triangular) 
based on 9999 estimates:

NGROW      DE      DC      PH
NGROW 11.8192  0.0000  0.0000  0.0000
DE    13.7983 18.6856  0.0000  0.0000
DC    10.2558 23.5940 21.2446  0.0000
PH    13.6740 15.2891 16.7606 13.8862

Alternative hypothesis: two.sided

Figure 18 – Output of the R function designed to test genetic covariance via cross-products
ratio based on Monte Carlo Simulation of Wishart matrices

Table 8 – Genetic covariances, correlations and associated p-values calculated through
the approaches of Wilks’ Lambda, Pillai’s Tn, null correlation PDF (Exact) and mean
cross-products ratio based on bootstrap resampling and Monte Carlo simulation

Data Pairs Cov. Cor.
p-value

Wilks Pillai Exact Bootstrap Simulation

In
co
m
pl
et
e

NGROW vs DE 0.5148 0.7641 0.0611 0.1265 0.0769 0.0000 0.0166

NGROW vs DC 0.1486 0.6817 0.1139 0.1728 0.1359 0.0075 0.0652

NGROW vs PH 0.0370 0.1268 0.7989 0.7997 0.8107 0.1675 0.2248

DE vs DC 0.0332 1.0186 NA 0.0416 0.0005 0.0000 0.0015

DE vs PH 0.0077 0.1755 0.7235 0.7256 0.7395 0.0875 0.0997

DC vs PH -0.0016 -0.1109 0.8240 0.8245 0.8344 0.5900 0.6025

C
om

pl
et
e

NGROW vs DE 0.2515 0.5267 0.0000 0.0000 0.0000 0.0000 0.0000

NGROW vs DC 0.0654 0.2181 0.0004 0.0005 0.0004 0.0000 0.0000

NGROW vs PH 0.0712 0.3335 0.0000 0.0000 0.0000 0.0000 0.0000

DE vs DC 0.0207 0.8272 0.0000 0.0000 0.0000 0.0000 0.0000

DE vs PH 0.0051 0.2860 0.0000 0.0000 0.0000 0.0000 0.0000

DC vs PH 0.0023 0.2074 0.0008 0.0009 0.0008 0.0000 0.0000
NA: not available

showed more sensitivity than the bootstrap’s. For example, in the case involving FL vs
FW (rG = 0.1470), only the test based on simulation indicates evidence (p < 0.05) against
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Figure 19 – Graphical representation of the correlation matrix among tests based on their
p-values

Table 9 – Genetic covariances, correlations and associated p-values calculated through the
approaches of Wilks’ Lambda, Pillai’s Tn, null correlation PDF (Exact) and mean cross-
products ratio based on bootstrap resampling and Monte Carlo simulation from three
illustrating data sets

Data Pairs Cov. Cor.
p-value

Wilks Pillai Exact Bootstrap∗ Simulation

M
ai
ze

PH vs YI -3830.67 -0.6289 0.0333 0.0592 0.0382 0.0450 (9.73) 0.0862

PH vs FA -4759.46 -0.6653 0.0218 0.0460 0.0255 0.0000 (31.31) 0.0000

YI vs FA 358.42 0.1051 0.7518 0.7524 0.7583 0.4850 (1.24) 0.3809

G
ar
lic

BD vs BL 8.0002 0.9709 0.0000 0.0000 0.0000 0.0000 (2.89) 0.0000

BD vs YI 7.1163 0.9745 0.0000 0.0000 0.0000 0.0000 (3.05) 0.0000

BL vs YI 5.8318 0.9857 0.0000 0.0000 0.0000 0.0000 (3.39) 0.0000

Pe
pp

er FL vs PL 0.1183 0.1723 0.6024 0.6051 0.6124 0.1175 (5.38) 0.0731

FL vs FW 1.4929 0.1470 0.6575 0.6592 0.6662 0.1725 (5.79) 0.0479

PL vs FW 1.4987 0.7106 0.0119 0.0330 0.0143 0.0350 (19.45) 0.0000
∗Values in round brackets represent mean cross-products ratio.

H0. Note that the mean cross-products ratio is 5.79, meaning that the joint effect of the
genetic and residual covariance on the phenotypic covariance is 5.79 times grater than the
effect of the residual covariance only.
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5 CONCLUDING REMARKS

5.1 Conclusions

Only under certain conditions does the probability density function of the product
of two random Gaussian variables approximate the normal curve. Therefore, studying
the distribution of a mean cross-products ratio as a quotient of two Gaussian variables is
not suitable.

Wilks’ and Pillai’s statistics for testing independence of two sets of Gaussian vari-
ables can be used to test genetic covariance. Their approximations to a χ2

1 distribution
were checked for two scenarios of sample size, and using the degrees of freedom associated
with the genetic factor as the number of independent observations.

We observed similarities among respective p-values calculated using both approaches
and p-values obtained from the exact correlation PDF under the null hypothesis (H0 :
ρG(ij) = 0), which is equivalent to a Student’s t-test for the correlation coefficient on g−1
degrees of freedom. In addition, we found that Wilks’ Lambda is more sensitive than the
two others, although they have provided similar conclusions about the null hypothesis.

The sample size affected the p-values of the three tests similarly. The accuracy of
their inferences depends on the quality of the matrixG of (co)variance components, which
might be related to the method of estimation.

Both procedures are invariant to scaling, allowing one to test either genetic covari-
ance or correlation. Moreover, the test statistics presented can be applied in a more
general way in order to test environmental covariances or other covariance components.

The F distribution can be reproduced by simulating Wishart matrices and boot-
strapping experimental data. Thus, an intuitive test of genetic covariance can be build
based on mean cross-products ratio.

Tests based on mean cross-products ratio are related to both the value of the genetic
covariance and the magnitude of the latter relative to the residual covariance. In addition,
both approaches (bootstrap and simulation) are more sensitive than the tests based on
Wilks, Pillai statistics and null correlation PDF.

The performance of the tests based on mean cross-products ratio is related to the
quality of the original data set in terms of the MANOVA assumptions. Moreover, the test
statistic does not depend on the estimation of the matrix ΣG.

The test based on simulation of Wishart matrices is easier to implement, especially
when dealing with complex experimental designs. Furthermore, it should be preferred
when dealing with small sample sizes, say n < 20 experimental units.

When analyzing a large data set, 256 progenies and 12 environments, the mean
cross-products ratios showed approximation to a Normal distribution.
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5.2 Future directions

Here it was developed R functions that estimate ΣG through the method of mo-
ments. However, when dealing with unbalanced data, the method of restricted maximum
likelihood (REML) must be preferred. For balanced data, it is known that both methods
provide very similar estimates.

Development of a statistics based on Wilks’ Lambda for testing genetic covariance
taking into account the residual covariance.

Although the main interest in the tests presented here is elementwise, a p-value
adjustment for multiple tests can be done through methods such as Bonferroni or Holm
(HOLM, 1979).

Any concerns about the effects of other variables on the estimates of genetic co-
variances can be dealt with by using partial covariance matrices in place of the ordinary
covariance matrices.

Power analysis for empirical tests may be developed following the approach presented
by Silva et al. (2015), used to calculate the simulated power of Mantel’s test.

Implementations in R language developed in this thesis should be published in the
next version of the package biotools (SILVA, 2015).
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Appendix A - R code for performing analysis of variance according to a square
lattice design, per environment, and to determine the least square means
adjusted for block effects
> dados <- read.table("lattice16.csv", sep=";", header=TRUE)
> dados$fAmb <- factor(dados$Amb)
> dados$fRep <- factor(dados$Rep)
> dados$fBloco <- factor(dados$Bloco)
> dados$fTrat <- factor(dados$Trat)
> dados$PGCHA <- dados$PG * ((100 - dados$Umidade)/27040)

> require(car)
> require(doBy)

> I <- nlevels(dados$fAmb)
> J <- nlevels(dados$fTrat)
> nvar <- 12
> ls.mat <- matrix(NA, nrow=I*J, ncol=nvar)
> colnames(ls.mat) <- colnames(dados[,7:18])
> for(p in 1:nvar) {
+ for(i in 1:I) {
+ ls.mat[((i-1)*J+1):((i-1)*J+J), p] <- popMeans(aov(dados[dados$fAmb==i, p+6] ~
+ fRep + fRep/fBloco + fTrat,data = dados[dados$fAmb == i, ]),
+ effect = "fTrat")$Estimate
+ }
+ }
> trat <- rep(1:J, times = I)
> amb <- rep(1:I, each = J)
> write.table(x = cbind(amb, trat, ls.mat), file = "mediasGxA.csv",
+ sep = ";", row.names = FALSE)
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Appendix B - R code for performing joint multivariate analysis of variance
> medias <- read.table("mediasGxA.csv", sep=";", header=TRUE)
> medias$f.env <- factor(medias$env)
> medias$f.prog <- factor(medias$progeny)

> M1 <- manova(cbind(NE, W500, LE, DE, DC, NROWS, NGROW, YP, PH, EH, MF, FF) ~
+ f.env + f.prog, data = medias)

> summary(M1, test = "Wilks")
Df Wilks approx F num Df den Df Pr(>F)

f.env 11 0.00113222 223.743 132 22887 < 2.2e-16 ***
f.prog 255 0.00023922 11.016 3060 33546 < 2.2e-16 ***
Residuals 2805
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# testing for residual normality
> require(mvShapiroTest)
> mvShapiro.Test(residuals(M1))

Generalized Shapiro-Wilk test for Multivariate Normality by
Villasenor-Alva and Gonzalez-Estrada

data: residuals(M1)
MVW = 0.9755, p-value < 2.2e-16
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Appendix C - Function in R language for collinearity diagnosis
conditionNumber <-
function(m)
{

eigval <- svd(m)$d
cn <- max(eigval) / min(eigval)
meaning <- NULL
if (cn < 100) {

meaning <- "weak collinearity"
} else if (cn > 1000) {

meaning <- "severe collinearity"
} else {

meaning <- "moderate to severe collinearity"
}
attr(cn, "meaning") <- meaning
return(cn)

}
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Appendix D - Function in R language for testing components of covariance
via the partial Wilks’ and Pillai’s statistics

gencovtest1 <-
function(obj, geneticFactor, gcov = NULL,

residualFactor = NULL, correctionFactor = 1,
test = c("Wilks", "Pillai"))

{
if (!inherits(obj, "manova"))

stop("’obj’ must be of class ’manova’")
manov <- anova(obj)
model <- obj$model
SS <- summary(obj)$SS
stopifnot(geneticFactor %in% names(model))
dfg <- manov[geneticFactor, "Df"]
Mg <- SS[[geneticFactor]] / dfg
if (is.null(residualFactor)) {

dfe <- df.residual(obj)
Me <- SS[["Residuals"]] / dfe

} else {
stopifnot(residualFactor %in% names(model))
dfe <- manov[residualFactor, "Df"]
Me <- SS[[residualFactor]] / dfe

}
test <- match.arg(test)
nvar <- nrow(Mg)
if (is.null(gcov)) {

nrep <- nrow(model) / nlevels(model[[geneticFactor]])
gcov <- (Mg - Me) / (nrep * correctionFactor)

} else {
if (nrow(gcov) != nvar || ncol(gcov) != nvar)

stop("’gcov’ presents incompatible dimensions")
}
gcor <- cov2cor(gcov)

# collinearity diagnosis
cn <- conditionNumber(gcov)
if (cn > 100) {

mess <- paste("the genetic covariance matrix presents",
attr(cn, "meaning"))

warning(mess)
}

# Aux. function for Wilks’ Lambda and Pillai’s Tn
teststat <- function(m, var1, var2)
{

m2 <- m[c(var1, var2), c(var1, var2)]
Lambda <- det(m2) / prod(diag(m2))
Tn <- m2[1, 2]^2 / prod(diag(m2))
out <- list(Lambda = Lambda, Tn = Tn)
return(out)

}

# test statistics, chi-sq approx and p-values
pval <- matrix(NA, nvar, nvar,

dimnames = list(rownames(Mg), colnames(Mg)))
stat <- X2 <- pval
for(i in 1:nvar){
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for(j in 1:nvar){
if (i != j) {

if (test == "Wilks") {
stat[i, j] <- teststat(gcov, i, j)$Lambda
X2[i, j] <- -dfg * log(stat[i, j])

} else {
stat[i, j] <- teststat(gcov, i, j)$Tn
X2[i, j] <- dfg * stat[i, j]

}
pval[i, j] <- pchisq(X2[i, j], 1, lower.tail = FALSE)

}
}

}

# output
out <- list(gcov = gcov, gcor = gcor,

test = test, statistics = stat, X2 = X2,
p.value = pval)

class(out) <- "gencovtest"
return(out)

}

# ---------------------------
# print method
print.gencovtest <-
function(x, digits = 4, ...)
{

cat("\n Genetic Covariance Test \n")
cat("\nGenetic (Co)variances and Correlations (upper triangular):\n")
GR <- lower.tri(x$gcov, diag = TRUE) * x$gcov +

upper.tri(x$gcor) * x$gcor
print(round(GR, digits))
cat("\nChi-Sq (df = 1) approx. (", x$test, ") and

p-values (upper triangular):\n", sep = "")
X2.p <- lower.tri(x$X2, diag = TRUE) * x$X2 +

upper.tri(x$p.value) * x$p.value
print(round(X2.p, digits))
invisible(x)

}
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Appendix E - Test results for the experimental maize data using the partial
Wilks’ and Pillai’s statistics

> wil <- gencovtest1(M1, "f.prog", test = "Wilks")
Warning message:
In gencovtest1(M1, "f.prog", test = "Wilks") :

the genetic covariance matrix presents severe collinearity
> wil

Genetic Covariance Test

Genetic (Co)variances and Correlations (upper triangular):
NE W500 LE DE DC NROWS NGROW YP PH EH MF FF

NE 6.5256 0.2177 0.4884 0.3033 0.0389 -0.0289 0.6764 0.8267 0.4145 0.4251 -0.5816 -0.6783
W500 6.2075 124.6141 0.4378 0.2981 0.1341 -0.3265 0.1691 0.3735 0.3517 0.2227 -0.3492 -0.3247
LE 0.9888 3.8738 0.6282 0.2467 0.1363 -0.0260 0.7244 0.6348 0.4383 0.3855 -0.5048 -0.4818
DE 0.1545 0.6637 0.0390 0.0398 0.8272 0.6410 0.5267 0.6919 0.2860 0.2693 -0.5829 -0.5397
DC 0.0124 0.1876 0.0135 0.0207 0.0157 0.6785 0.2181 0.3957 0.2074 0.2159 -0.4115 -0.3595
NROWS -0.0686 -3.3855 -0.0191 0.1187 0.0790 0.8629 0.1565 0.2726 0.0565 0.1292 -0.2188 -0.1948
NGROW 4.1364 4.5202 1.3744 0.2515 0.0654 0.3480 5.7315 0.8510 0.3335 0.3453 -0.6548 -0.6449
YP 625.4283 1234.7471 149.0034 40.8635 14.6868 74.9947 603.4157 87712.2529 0.4688 0.4536 -0.7596 -0.7848
PH 0.0944 0.3501 0.0310 0.0051 0.0023 0.0047 0.0712 12.3797 0.0080 0.8126 -0.1804 -0.2034
EH 0.0675 0.1545 0.0190 0.0033 0.0017 0.0075 0.0514 8.3487 0.0045 0.0039 -0.0728 -0.0943
MF -2.9878 -7.8388 -0.8046 -0.2338 -0.1037 -0.4087 -3.1527 -452.4214 -0.0324 -0.0091 4.0446 0.9549
FF -4.1560 -8.6943 -0.9158 -0.2581 -0.1081 -0.4339 -3.7029 -557.4733 -0.0435 -0.0140 4.6060 5.7521

Chi-Sq (df = 1) approx. (Wilks) and p-values (upper triangular):
NE W500 LE DE DC NROWS NGROW YP PH EH MF FF

NE NA 0.0004 0.0000 0.0000 0.5347 0.6443 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
W500 12.3791 NA 0.0000 0.0000 0.0315 0.0000 0.0065 0.0000 0.0000 0.0003 0.0000 0.0000
LE 69.4860 54.2706 NA 0.0001 0.0288 0.6783 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DE 24.6074 23.7370 16.0124 NA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DC 0.3854 4.6251 4.7809 294.0248 NA 0.0000 0.0004 0.0000 0.0008 0.0005 0.0000 0.0000
NROWS 0.2132 28.7416 0.1721 134.9498 157.3080 NA 0.0119 0.0000 0.3666 0.0382 0.0004 0.0017
NGROW 155.9297 7.4013 189.6706 82.8611 12.4296 6.3215 NA 0.0000 0.0000 0.0000 0.0000 0.0000
YP 293.2822 38.3073 131.5193 166.1326 43.4163 19.6903 328.5304 NA 0.0000 0.0000 0.0000 0.0000
PH 48.0748 33.6744 54.4010 21.7665 11.2152 0.8152 30.0702 63.2683 NA 0.0000 0.0037 0.0010
EH 50.8380 12.9763 41.0369 19.1979 12.1697 4.2959 32.3808 58.7428 275.3833 NA 0.2441 0.1314
MF 105.2736 33.1530 74.9890 105.8687 47.3167 12.5039 142.7902 219.3778 8.4407 1.3566 NA 0.0000
FF 157.1981 28.4173 67.3434 87.7908 35.2859 9.8605 137.1098 244.0426 10.7766 2.2758 619.4521 NA

> pil <- gencovtest1(M1, "f.prog", test = "Pillai")
Warning message:
In gencovtest1(M1, "f.prog", test = "Pillai") :

the genetic covariance matrix presents severe collinearity
> pil

Genetic Covariance Test

Genetic (Co)variances and Correlations (upper triangular):
NE W500 LE DE DC NROWS NGROW YP PH EH MF FF

NE 6.5256 0.2177 0.4884 0.3033 0.0389 -0.0289 0.6764 0.8267 0.4145 0.4251 -0.5816 -0.6783
W500 6.2075 124.6141 0.4378 0.2981 0.1341 -0.3265 0.1691 0.3735 0.3517 0.2227 -0.3492 -0.3247
LE 0.9888 3.8738 0.6282 0.2467 0.1363 -0.0260 0.7244 0.6348 0.4383 0.3855 -0.5048 -0.4818
DE 0.1545 0.6637 0.0390 0.0398 0.8272 0.6410 0.5267 0.6919 0.2860 0.2693 -0.5829 -0.5397
DC 0.0124 0.1876 0.0135 0.0207 0.0157 0.6785 0.2181 0.3957 0.2074 0.2159 -0.4115 -0.3595
NROWS -0.0686 -3.3855 -0.0191 0.1187 0.0790 0.8629 0.1565 0.2726 0.0565 0.1292 -0.2188 -0.1948
NGROW 4.1364 4.5202 1.3744 0.2515 0.0654 0.3480 5.7315 0.8510 0.3335 0.3453 -0.6548 -0.6449
YP 625.4283 1234.7471 149.0034 40.8635 14.6868 74.9947 603.4157 87712.2529 0.4688 0.4536 -0.7596 -0.7848
PH 0.0944 0.3501 0.0310 0.0051 0.0023 0.0047 0.0712 12.3797 0.0080 0.8126 -0.1804 -0.2034
EH 0.0675 0.1545 0.0190 0.0033 0.0017 0.0075 0.0514 8.3487 0.0045 0.0039 -0.0728 -0.0943
MF -2.9878 -7.8388 -0.8046 -0.2338 -0.1037 -0.4087 -3.1527 -452.4214 -0.0324 -0.0091 4.0446 0.9549
FF -4.1560 -8.6943 -0.9158 -0.2581 -0.1081 -0.4339 -3.7029 -557.4733 -0.0435 -0.0140 4.6060 5.7521

Chi-Sq (df = 1) approx. (Pillai) and p-values (upper triangular):
NE W500 LE DE DC NROWS NGROW YP PH EH MF FF

NE NA 0.0005 0.0000 0.0000 0.5349 0.6443 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
W500 12.0834 NA 0.0000 0.0000 0.0323 0.0000 0.0069 0.0000 0.0000 0.0004 0.0000 0.0000
LE 60.8231 48.8843 NA 0.0001 0.0295 0.6783 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DE 23.4574 22.6657 15.5200 NA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DC 0.3851 4.5834 4.7364 174.5026 NA 0.0000 0.0005 0.0000 0.0009 0.0006 0.0000 0.0000
NROWS 0.2131 27.1810 0.1720 104.7879 117.3974 NA 0.0125 0.0000 0.3670 0.0390 0.0005 0.0019
NGROW 116.6517 7.2950 133.7982 70.7455 12.1315 6.2437 NA 0.0000 0.0000 0.0000 0.0000 0.0000
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YP 174.2678 35.5688 102.7534 122.0779 39.9214 18.9492 184.6903 NA 0.0000 0.0000 0.0000 0.0000
PH 43.8149 31.5457 48.9897 20.8634 10.9722 0.8139 28.3649 56.0303 NA 0.0000 0.0040 0.0012
EH 46.0910 12.6517 37.9051 18.4930 11.8839 4.2599 30.4092 52.4677 168.3975 NA 0.2447 0.1323
MF 86.2488 31.0883 64.9687 86.6421 43.1861 12.2023 109.3361 147.1266 8.3025 1.3530 NA 0.0000
FF 117.3381 26.8911 59.1847 74.2733 32.9533 9.6722 106.0549 157.0719 10.5521 2.2657 232.5332 NA
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Appendix F - Function in R language for testing genetic correlation using the
null correlation PDF

ect <-
function(obj, geneticFactor,

residualFactor = NULL, correctionFactor = 1,
alternative = c("two.sided", "less", "greater"))

{
alternative <- match.arg(alternative)
if (!inherits(obj, "manova"))

stop("’obj’ must be of class ’manova’")
manov <- anova(obj)
model <- obj$model
SS <- summary(obj)$SS
stopifnot(geneticFactor %in% names(model))
dfg <- manov[geneticFactor, "Df"]
Mg <- SS[[geneticFactor]] / dfg
if (is.null(residualFactor)) {

dfe <- df.residual(obj)
Me <- SS[["Residuals"]] / dfe

} else {
stopifnot(residualFactor %in% names(model))
dfe <- manov[residualFactor, "Df"]
Me <- SS[[residualFactor]] / dfe

}
nrep <- nrow(model) / nlevels(model[[geneticFactor]])
gcov <- (Mg - Me) / (nrep * correctionFactor)
gcor <- cov2cor(gcov)
nvar <- nrow(Mg)

# r PDF
fr <- function(r, Df) ((1-r^2)^((Df-2)/2)) / beta(.5, Df/2)

# p-values
pval <- matrix(NA, nvar, nvar,

dimnames = list(rownames(gcov), colnames(gcov)))
if (alternative == "two.sided") {

for(i in 1:nvar) {
for(j in 1:nvar) {

pval[i, j] <- 2 * integrate(fr, Df = dfg,
abs(gcor[i, j]), 1)$value

}
}

} else if (alternative == "less") {
for(i in 1:nvar) {

for(j in 1:nvar) {
pval[i, j] <- integrate(fr, Df = dfg, -1,

gcor[i, j])$value
}

}
} else if (alternative == "greater") {

for(i in 1:nvar) {
for(j in 1:nvar) {

pval[i, j] <- integrate(fr, Df = dfg,
gcor[i, j], 1)$value

}
}

}
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# output
out <- list(gcor = gcor, p.values = pval,

alternative = alternative)
class(out) <- "ect"
return(out)

}

# -----------------------------
# print method
print.ect <-
function(x, digits = 4, ...)
{

cat("\n Exact Correlation Test \n")
cat("\nGenetic Correlations and p-values (upper triangular):\n")
Rp <- lower.tri(x$gcor, diag = TRUE) * x$gcor +

upper.tri(x$p.values) * x$p.values
print(round(Rp, digits))
cat("\nAlternative hypothesis:", x$alternative, "\n")
invisible(x)

}
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Appendix G - Function in R language for testing components of covariance
via mean cross-products ratio based on bootstrap resampling of a experimen-
tal data obtained from an experiment carried out under a randomized block
design

gencovtest2 <-
function(obj, geneticFactor, repFactor,

correctionFactor = 1, nboot = 400,
alternative = c("two.sided", "less", "greater"))

{
stopifnot(geneticFactor %in% names(obj$model))
stopifnot(repFactor %in% names(obj$model))
alternative <- match.arg(alternative)
if (!inherits(obj, "manova"))

stop("’obj’ must be of class ’manova’")
model <- obj$model
SS <- summary(obj)$SS
dfg <- anova(obj)[geneticFactor, "Df"]
Mg <- SS[[geneticFactor]] / dfg
dfe <- df.residual(obj)
Me <- SS[["Residuals"]] / dfe
ratio <- Mg / Me
p <- nvar <- ncol(Mg)
nrep <- nrow(model) / nlevels(model[[geneticFactor]])
gcov <- (Mg - Me) / (nrep * correctionFactor)
gcor <- cov2cor(gcov)

# objects for bootstrapping
GenLev <- levels(model[[geneticFactor]])
nGen <- length(GenLev)
EnvLev <- levels(model[[repFactor]])
nEnv <- length(EnvLev)
mBoot <- matrix(nrow = nboot, ncol = nGen)
mcpG <- mcpR <- array(dim = c(p, p, nboot))
fgen <- factor(rep(1:nGen, nEnv))
frep <- gl(nEnv, nGen)

# bootstrap
pb <- winProgressBar(title = "Genetic Covariance Test via Bootstrap",

label = "RESAMPLING PROGRESS", min = 0, max = nboot, width = 300L)
i = 1
repeat{

mBoot[i, ] <- sample(GenLev, replace = TRUE)
Ar1 <- array(dim = c(nEnv, p, nGen))
for(j in 1:nGen) {

Ar1[,, j] <- subset(model,
model[[geneticFactor]] == mBoot[i, j])[[1]]

}
Yboot <- apply(Ar1, 2, rbind)
Mboot <- manova(Yboot ~ frep + fgen)
mcpG[,, i] <- summary(Mboot)$SS[["fgen"]] / dfg
mcpR[,, i] <- summary(Mboot)$SS[["Residuals"]] / dfe
setWinProgressBar(pb, i,

label = sprintf("RESAMPLING PROGRESS (%.0f%%)", 100*i/nboot))
i <- i + 1
if (i > nboot) break()

}
stat <- windata(mcpG / mcpR, p = 0.01)
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colnames(stat) <- rownames(stat) <- colnames(Mg)

# p-values
pval <- matrix(NA, nvar, nvar,

dimnames = list(rownames(Mg), colnames(Mg)))
if (alternative == "two.sided") {

for(i in 1:nvar) {
for(j in 1:nvar) {

if (i != j) {
pval[i, j] <- mean(stat[i, j, ] -

median(stat[i, j, ]) >= abs(ratio[i, j]) -
median(stat[i, j, ])) +
mean(stat[i, j, ] -
median(stat[i, j, ]) <= -abs(ratio[i, j]) -
median(stat[i, j, ]))

} else {
pval[i, j] <- mean(stat[i, j, ] >= ratio[i, j])

}
}

}
pval[pval > 1] <- 1

} else if (alternative == "less") {
for(i in 1:nvar) {

for(j in 1:nvar) {
pval[i, j] <- mean(stat[i, j, ] <= ratio[i, j])

}
}
diag(pval) <- 1

} else if (alternative == "greater") {
for(i in 1:nvar) {

for(j in 1:nvar) {
pval[i, j] <- mean(stat[i, j, ] >= ratio[i, j])

}
}

}

# output
out <- list(gcov = gcov, ratio = ratio,

bootratio = stat, p.values = pval,
alternative = alternative, dfg = dfg, dfe = dfe)

class(out) <- "bootTest"
Sys.sleep(0.5)
close(pb)
return(out)

}

# -------------------------------
# winsorized data
windata <-
function(x, p)
{

if(length(p) != 1 || p < 0 || p > 0.5)
stop(’"p" deve ser um valor entre 0 e 0.5!’)

qx <- quantile(x, c(p, 1-p))
x[x < qx[1]] <- qx[1]
x[x > qx[2]] <- qx[2]
return(x)

}
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# -------------------------------
# print method
print.bootTest <-
function(x, digits = 4, ...)
{

cat("\n Genetic Covariance Test via Bootstrap \n")
cat("\nGenetic (Co)variances and Correlations (upper triangular):\n")
gcor <- cov2cor(x$gcov)
GR <- lower.tri(x$gcov, diag = TRUE) * x$gcov +

upper.tri(gcor) * gcor
print(round(GR, digits))
nsim <- dim(x$bootratio)[3L]
cat("\nMean Sq and Cross-Prods Ratios and p-values (upper triangular) \nbased on",

nsim, "estimates:\n")
ratP <- lower.tri(x$ratio, diag = TRUE) * x$ratio +

upper.tri(x$p.values) * x$p.values
print(round(ratP, digits))
cat("\nAlternative hypothesis:", x$alternative, "\n")
invisible(x)

}
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Appendix H - Function in R language for testing components of covariance
via mean cross-products ratio based on Monte Carlo simulation

gencovtest3 <-
function(obj, geneticFactor,
residualFactor = NULL, correctionFactor = 1,
nsim = 9999, alternative = c("two.sided", "less", "greater"))
{

if (!inherits(obj, "manova"))
stop("’obj’ must be of class ’manova’")

alternative <- match.arg(alternative)
manov <- anova(obj)
model <- obj$model
SS <- summary(obj)$SS
stopifnot(geneticFactor %in% names(model))
dfg <- manov[geneticFactor, "Df"]
Mg <- SS[[geneticFactor]] / dfg
if (is.null(residualFactor)) {

dfe <- df.residual(obj)
Me <- SS[["Residuals"]] / dfe

} else {
stopifnot(residualFactor %in% names(model))
dfe <- manov[residualFactor, "Df"]
Me <- SS[[residualFactor]] / dfe

}
nvar <- nrow(Mg)
ratio <- Mg / Me
nrep <- nrow(model) / nlevels(model[[geneticFactor]])
gcov <- (Mg - Me) / (nrep * correctionFactor)
gcor <- cov2cor(gcov)

# Wishart simulation
WG <- rWishart(nsim, dfg, Me) / dfg
WR <- rWishart(nsim, dfe, Me) / dfe
stat <- windata(WG / WR, p = 0.01)
dimnames(stat) = list(rownames(Mg), colnames(Mg), NULL)

# p-values
pval <- matrix(NA, nvar, nvar,

dimnames = list(rownames(Mg), colnames(Mg)))
if (alternative == "two.sided") {

for(i in 1:nvar) {
for(j in 1:nvar) {

if (i != j) {
pval[i, j] <- mean(stat[i, j, ] -

median(stat[i, j, ]) >= abs(ratio[i, j]) -
median(stat[i, j, ])) +
mean(stat[i, j, ] -
median(stat[i, j, ]) <= -abs(ratio[i, j]) -
median(stat[i, j, ]))

} else {
pval[i, j] <- mean(stat[i, j, ] >= ratio[i, j])

}
}

}
pval[pval > 1] <- 1

} else if (alternative == "less") {
for(i in 1:nvar) {
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for(j in 1:nvar) {
pval[i, j] <- mean(stat[i, j, ] <= ratio[i, j])

}
}
diag(pval) <- 1

} else if (alternative == "greater") {
for(i in 1:nvar) {

for(j in 1:nvar) {
pval[i, j] <- mean(stat[i, j, ] >= ratio[i, j])

}
}

}

# output
out <- list(gcov = gcov, ratio = ratio,

simratio = stat, p.values = pval,
alternative = alternative,
dfg = dfg, dfe = dfe)

class(out) <- "genCovTest"
return(out)

}

# --------------------------
# winsorized data
windata <-
function(x, p)
{

if(length(p) != 1 || p < 0 || p > 0.5)
stop(’"p" deve ser um valor entre 0 e 0.5!’)

qx <- quantile(x, c(p, 1-p))
x[x < qx[1]] <- qx[1]
x[x > qx[2]] <- qx[2]
return(x)

}

# --------------------------
# print method
print.genCovTest <-
function(x, digits = 4, ...)
{

cat("\n Genetic Covariance Test via Wishart Simulation \n")
cat("\nGenetic (Co)variances and Correlations (upper triangular):\n")
gcor <- cov2cor(x$gcov)
GR <- lower.tri(x$gcov, diag = TRUE) * x$gcov +

upper.tri(gcor) * gcor
print(round(GR, digits/2))
nsim <- dim(x$simratio)[3L]
cat("\nMean Sq and Cross-Prods Ratios and p-values (upper triangular) \nbased on",

nsim, "estimates:\n")
ratP <- lower.tri(x$ratio, diag = TRUE) * x$ratio +

upper.tri(x$p.values) * x$p.values
print(round(ratP, digits))
cat("\nAlternative hypothesis:", x$alternative, "\n")
invisible(x)

}


